VSM COLLEGE OF ENGINEERING
RAMACHANDRA PURAM

MICROPROCESSOR AND MICROCONTRILLERS (R20)
III B. TECH ECE II SEM

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

R-20 Syllabus for ECE - INTUK w. e. f. 2020 — 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
KAKINADA -533 003, Andhra Pradesh, India
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

L T P C
3 1 0 3

MICROPROCESSOR AND MICROCONTROLLERS

III Year — II Semester

UNIT-1

Introduction: Basic Microprocessor architecture, Harvard and Von Neumann architectures
with examples, Microprocessor Unit versus Microcontroller Unit, CISC and RISC
architectures.

8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family,
internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response,
8086 system timing, minimum mode and maximum mode configuration.

UNIT-II

8086 Programming: Program development steps, instructions, addressing modes, assembler
directives, writing simple programs with an assembler, assembly language program
development tools.

UNIT-IIT

8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255
programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven
segment displays, software and hardware interrupt applications, Intel 8251 USART
architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A
converters, Need for 8259 programmable interrupt controllers.

UNIT-1V
Intel 8051 MICROCONTROLLER
Architecture, Hardware concepts, Input/output ports and circuits, external

memory, counters/timers, serial data input/output, interrupts. Assembly language
programming: Instructions, addressing modes, simple programs. Interfacing to 8051: A/D
and D/A Convertors, Stepper motor interface, keyboard, LCD Interfacing, Traffic light
controls.

UNIT-V

ARM Architectures and Processors: ARM Architecture, ARM Processors Families, ARM
Cortex-M Series Family, ARM Cortex-M3 Processor Functional Description, functions and
interfaces, Programmers Models, ARM Cortext-M3 programming — Software delay,
Programming techniques, Loops, Stack and Stack pointer, subroutines and parameter passing,
parallel I/O, Nested Vectored Interrupt Controller — functional description and NVIC
programmers’ model.

TEXTBOOKS:

1. A.K Ray, K.M.Bhurchandhi, Advanced Microprocessor and Peripherals”, Tata McGraw
Hill Publications, 2000.

2. The 8051 Microcontrollers and Embedded systems Using Assembly and C, Muhammad
Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; Pearson 2-Edition,
2011.

3. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors by JosephYou.

R-20 Syllabus for ECE - INTUK w. e. f. 2020 — 21

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA
KAKINADA —533 003, Andhra Pradesh, India
DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

REFERENCE BOOKS:

1. Embedded Systems Fundamentals with Arm Cortex-M based Microcontrollers: A
Practical Approach in English, by Dr. Alexander G. Dean, Published by Arm Education
Media, 2017.

2. Microprocessors and Interfacing — Programming and Hardware by Douglas V Hall, SSSP
Rao, Tata McGraw Hill Education Private Limited, 3" Edition, 1994.

3. Cortex -M3 Technical Reference Manual.

Course Outcomes:
At the end of this course the student will be able to:
1. Understand the architecture of microprocessor/ microcontroller and their operation.
2. Demonstrate programming skills in assembly language for processors and
Controllers.
3. Analyze various interfacing techniques and apply them for the design ofprocessor /
Controller based systems.

o

Introduction:

Microprocessor:

It is & semiconductor device consisting of electronic logic circuits manufactu
large scale (LSI) or Very Large-Scale Integration (VLSI) Technigue. It inclu
and controllcircuits on a single chip.

The microprocessor has a set of instructions,

communicate with peripherals. This

UNIT - I: 8086/8088 MICROPROCESSORS

process of data manipulation and communication

logic design of the microprocessor called the architecture.

The era microprocessors in

4004. Using this first portable calculator is designe

MICTOProcessors.

the year 1971, the Intel introdu
d. The following table shows the list o

designed internally,

Year Name Bit Size—‘
1971 4004 4 o
1972 3008 8

1974 3080 8

1977 8083 §

1978 8086 16

1979 3089 16

1982 80286 32

1985 80386 32

1989 80486 32

1993 80586(Pentium) 32

1995 Pentium Pro 32

1997 Pentium 11 32

1999 Ecleron and Pentium IIT | 32

2000 Pentium IV 32

2001 Intanium 64
2003 Pentium M processor 64 T
2005 Pentium IV and Xeon 64
2006 Pentium D 900 64

red by using either a
des the ALU, register arrays

to manipulate data and

is determined by the

ced the first 4-bit microprocessor is

f Intel

LI I

4

decade is shown in the table

A microcomputer system just as any other compute

Hardware and Software.

The memory is use
broken into several modules, each module containing several thousand locations. Each location

The different manufacturing companies are introduced different bit size mi

R—

Company Name

Processor Name

AMD Athlon
Cypress CcY7ce0l
DEC ALPHA
Fujitsu MBLB0S6
Harris CS80C286
LSI Logic LR 30000
National NS321016N
Semiconductor P
SGS-Thomson ST6X86
SUN-Micro SRP1030

Texas TMS390
Instruments

Toshiba TC85R4000

Zilog Z80

Motorola 63000

d to store both data and instructions that are currently being used. It 1

r system, include two principal comp

| |

croprocessors 11 the pay

onents

s normally

may

contain part or all of a datum or instruction and is associated with an identifier called a memory address.

" The CPU does its work by successfully inputting, or fetching instructions from memory and carrying out

the tasks detected them.

/o

Device

O/P
Dev_icc

Data Bus

I/O Ports

Control Bus

A

Cenlral
Processing
Unit

r

Memory
(RAM and
ROM)

o)
%,

» Above figure shows block diagram of a simple microcomputer. The m parts are the central

ajor
ris

.. Connecting these pa

essing unit or CPU, memory and the input and output circuitry or Input/outpu
uter the CPU is @

In a microcomp

i three sets of parallel line is called buscs and control bus.
pU). Its purpose is 1o decode the

aicroprocessor and is often referred to as the microprocessor unit (M
s all arithmetic and logical

instruction and use them to control the nctivity within the system. It perform

computations.
o mixture of RAM and ROM. It may also magnetic floppy

Memory: hemory section usually consists of
tical disks, to store the data.

section allows the computer to take in
rals such as keyboard, video display terminals. Pri

on. These allow the user and computer to communi
are often called ports.

DC) or some other

data from the outside world or send
nters and modem arc

disks, magnetic hard disks or op

Input/output: The input/output

data to the outside world. Periphe
cate with each other.

connected to the input/output secti
interface the computer buses to external systems

m keyboard, an analog to digital converter (A
tput port is used to send data from

nalog converter

The actual physical devices used to

An input/output port allows data fro
source to be read into the computer under the control of the CPU. An ou
s a video display terminal, 2 printer or a digital to a

the computer to some peripheral, such a
puter the

(DACQ).
ntrols the operation of the computer. In a microcom
odes the

Central Processing Unit (CPU): CPU co
the binary coded instructions from memory, dec

CPU is a microprocessor. The CPU fetches
arries out these actions in sequence of steps.

pointer register which holds the address of the next
which are used for

instructions into a series of simple action and c

CPU contains an address counter or instruction

instruction or data item to be fetched from memory, general purpose register,
which generates the control bus signals.
s. On these lines the CPU sends out

The number of memory

then it can directly

temporary storage or binary data and circuitry,
dress bus consists of 16, 20, 24 or 32 parallel line:

Address Bus: The ad
ocations that are to be written to or read from.

the address of the memory |
locations that the CPU can addresses

address 2n memory location. When the CPU

is determined by the number of address lines,

reads data from or writes data to a port, it sends the port

address on the address bus.
Ex: CPU has 16 address lines can address 216 or 65536 memory locations.

Data Bus: It consists of 8, 16, 32 parallel signal lines. The data bus lines are bidirectional. Thi

the CPU can read, data from memory O from a port on these lines, or it can send data out to memory or t0

s means that

port on these lines.
sts of 4 to 10 parallel signals lines. The CPU sends out signals on the

Control Bus: The control bus consi
s or port devices. Typical control bus signal are

control bus enable the outpuls of addressed memory device

memory read, memory write, 1/0 read and /O write.

¥ 4

2 -
AOES Z02 Ty,
“-""j{_‘j

mmsmwtnndthm‘m&sﬁgéﬁww@zphymﬁd! > -
- = 3 -:J~;,;‘;4_,"3::’.—'_"13;_w X
sompener. Sefware RIS 10 wollection of programs wrinen for the compeT i g,

prageams stored in ROM's or m other devices which permenently keep their 10T o

” o —— -y
:’:J:DH-J-"::?LE,

Irmrednction w 16-bit Microprocesser:

The 1&5m Macr sor fenihies zre desiened orimenily 1o comple N :
The ACTOProCeSSor TEmliss & designed primanly el oS of & 81
wiemsd weapds highdevel Lmgmapes Their applications somelime e
.' N . ressing WegEDYES Of mEmory,

mn&m TD: h&": R T 1L : T 3 AT 0]f: Ofad . = - e
; powerfal Instroction sets znd czpab on of pACE chip BY Nug,

The e of 1630 Microprocessors began in 1974 with the introd® -
2 Nocroprocessors began in 1974 wi sear 1976. The Iniel ggo.

Semomdncrr. The Texzs Insromens TMS9900 was introduced in the VIC58000 in i+
] . -) ’ 70, The Motorolz M o0 1 the ye,,
Sommergelly svelshle m the yezr 1978, Zilog Z800 in the year 1977,

The 155 Memoprocessors axe availsble in different pin packages.

Er oo 80858088 40 pin packages
oz Z800] 40 pin packages
ezl egmpment 1S1-11 40 pin packages
Mamzrola MCS8000 64 pin packages
Neiome] Semmicendnctor NS16000 48 pin packages

The ;rimery abjectives of this 16-bit Microprocessor can be summarized as follows.
1. Inzrease memory addressing capability
2. breese execution speed
3. Provide 2 powerful instruction set
*. Farliitzm= programming in high-level Janguages.

The INTEL 8086/8088 Features:

- Direa Addressing Capability 1 M Byte of Memory
* Asciectire Designad for Powerf]
* Assmbly Langnage ang Efficient High-Leve] Laugmg
1 Wtaﬂ,bylé—BitRf:gisterS-:IWithS ;)
" 2% Oprand Addressing yoge, e

L%y
"
6‘;"1{:

8
? , Range of Clock Rates:
SMHz for 8086,

8MHz for 8086-2,
10 MHz for 8086-1

MULTIBUS System Compatible Interface

Available in EXPRESS
_Standard Temperature Range

_Extended Temperature Range

Available in 40-Lead CERDIP and Plastic package

?

-pin Dual-Inline-Package (DIP) and capable of

It is a 16-bit Microprocessor housed in a 40
rent clock

addressing |Megabyte of memory, various versions of this chip can operate with diffe

frequencies .
i. 8086 (5 MHz)

ii. 8086-2 (8 MHz)
iii. 8086-1 (10 MHz).

It contains approximately 29,000 transistors and is fabricated using the HMOS technology. The
registers and most of its instructions aré

\erm 16-bit means that it’s arithmetic logic unit, its intemal
or has a 16-bit data bus, so it can read

designed to work with 16-bit binary word. The 8086 Microprocess

s at a time. The 8086 Microprocessor has 20-

from or write data to memory and ports either 16-bits or 8-bi
,576 memory locations. Here 16-bit words will

bit address bus, so it can address any one of 220 or 1,048
s. If the first byte of a word is at an even address, the 8086

be stored in two consecutive memory location
dd address the 8086 will read

can read entire word in one operation, if the first byte of the word is at an 0

the first byte with one bus operation and the second byte with another bus operation.

Signal Description of 8086 Microprocessor:
_bit CPU available in 3 clock rates, ie.5,8and 10MHz, packaged

The 8086 Microprocessor is a 16
in a 40 pin CERDIP or plastic package. The 8086 Microprocessor operates in single processor Or

multiprocessor configurations to achieve high performance.
The pin configuration is as shown in figure. Some of the pins serve a p
um mode (single processor mode) and others function in maximum mode (multiprocessor mode)

articular function in

minim

configuration.

The 8086 signals can be categorized in three groups. Th

functions in minimum as well as maximum mode, the second are L

- minimum mode and third are the si gnals having $

\ss (GND)
AD14
AD13
AD12
AD1
AD10

ADO |
ADS.

AD7
ADB
ADS
AD4
ADS3
AD2Z2
ADA
ADO
rIRAl
INTR
CLK
Vss (GND)

_ The following signals

Power supply and GND

pecial functions for maxim

O O~NQ0MH WKN=2

8086

MAX
MODE

vee (5P)
AD15
A16/53

are common for both the minimum and maximum modes.

Y

naIN
MODE

HOLD
HLDA

MO
DT/R
DEMN
ALE
A

It uses 5V DC supply at Vec pin 40, and uses gr ound at Vss pin 1 and 20 for its operation

Clock signal

-—

1B 1 I 16 t ug,h Pin-19. It PIOVldGS t]lllillg to the processor for operations Its fi
. 11s frequency

is different for different versions, i.e. 5SMHz, 8MHz and 10MHz

g

e first are the signals having comm, @ra-
Lﬂ;’ -\b

he signals which have special functi Qn:. \9

um mode.

S
)
&

o

-ADIS, these are 16 address/data bus, ADO-AD? carries low order byte data and ADS-ADIS carries

er order byte data. During the first clock cycle, it carries 16-bit address and after that it carries 16-bit

k‘Acldrcss! status bus

:MG-A19 /S3-S6. These are the 4 address/status buses. During the first clock cycle, it carries 4-bit

address andl later it carrics status signals.

_______.__________________...-———-
A17/S4 | A16/S3 Function
(e STy
0 0 Alternate Data !
S]
0 1 Stack
] 0 Code or none
1 1 Data

S7/BHE

BHE stands for Bus High Enable. It is available at pin 34 and used to indicate the transfer of data using

data bus D8-D15. This signal is low during the first clock cycle, thereafter it is active.

F}T}T’E A0 Function
0 0 | Whole Word
o | | Upper byte from or to odd address
1 0 | Upper byte from or to even address
1 1 | None |

Read (RD)
It is available at pin 32 and is used to read signal for Read operation.

Ready
It is available at pin 32. It is an acknowledgement signal from 1/O devices that data is transferred. It is an

active high signal. When it is high, it indicates that the device is ready to transfer data. When it is low, it

indicates weit state.

RESET
It is available at pin 21 and is used to restart the execution. It causes the processor to immediately
terminate its present activity. This signal is active high for the first 4 clock cycles to RESET the

microprocessor.

INTR

sampled during the last clock
It is available at pin 18. It is an interrupt request g cycle o,

signal, which !

i (or not. |
(his as 4N interrup ’

cach instruction to determine if the processor considered
o

NMI .17, Itis an edge triggered input, which cayg,. §
1t stands for non-maskable interrupt and is available at pin 2% 8 ;
an interrupt Irequest to the microprocessor. ¢

TEST 23, When (his signal is high, then the processor has ¢, ¢
n 23.

This signal is like wait state and is available at pi

wait for IDLE state, else the exccution continues:

MN/MX

It stands for Minimum/Maximum and 8 availabl
um mo

¢ at pin 33. It indicates what mode the processor is to

de and vice-versa.

operate in; when it s high, it works in the minim

Minimum Mode Signals:
INTA

It is an interrupt acknowledgement signal and id avail

able at pin 24. When the microprocessor receives
this signal, it acknowledges the interrupt.

ALE
It stands for address enable latch and is available at pin 25. A positive pulse is generated each time the

processor begins any operation. This signal indicates the availability of a valid address on the

address/data lines.

DEN

|

|

It stands for Data Enable and is avail i |
able at pin 26. It is used t

o - ; o enable Transrecei !

transceiver is a device used to separate data from the address/data bus o Cb |

1hl' gh]
1 —as

M/G
i

This si
0 gnal is used to distinguish between m ;
Peration and when it j low indj B B |
Caling the mepy, e |
iy I8 hugh, it indicates /0 E
- Itis availaple N |
at pin 28 I

!

4 is available at P 29. It is used to write the data into the
emory or th
€

ds for write signal an
atus of M/TO signal-

ut device depending on the st

=

nal and 1 available at pin 30. This signal acknowled
ges the

Jit stands for Hold Acknowledgement S8

!,‘-‘ HOLD signal.
: !

.'F'I i
!/ HOLD |
:. processor that external devices are re

This signal indicates t0 the
s. Itis available at pin 31.

questing to access the address/data

[buse

Maximum Mode Signals:

QS and QSo
ueue status sigha

and 25. These signals provide the status of

are available at pin 24

These are q
e shown in the followin

instruction queue. Their conditions af
Status

QS | Q51
0 |[No operation

|s and
g table —

First byte of opcode from the queue

| =
0 |Empty the queue
yte from the queue

T [ty fom e e

is used by the Bus Controller 8288

&, S1, 52
Following is the

 These are the status signals th vide the status of operation, which

at pro
in 26, 27, and 28.

to generate memory & 1/0 control signals. These are available at p

table showing their status —

__Ez___ & | & Status
0 0 0 Interrupt
acknowledgement |
0 0 I | VORead -
s ! 0 |10 Write
0 1 1 Halt
: 0 0 | Opcode fetch
1 0 1 | Memory read
: 1 0 | Memory write
: ! 1 Passive]

LOCK
\Whett thi slgnal 1 netive, it indicates 1o the other proc

is activated using the LOCK prefix on any instruction an

equesting the CPU to release the

RQGT) and RYGTo
gment. RQ/GTo has a higher

These ace the Request/Grant signals used by the 0

system bus. When the signal is received by CPU, the

priority than RY/GT1.

b

egister Organization of 8086:

special purpose registers. All

general purpose and
od either S-bit registers

8086 has a powerful set of registers containing §
can be us

the registers of 8036 are 16-bit registers. The gcneral -purposeé registers,
are either used for holding th
t address for some

registers, pointers,

e data, variables and

or 16-bit registers. The general-purpose registers ar
results temporarily or for other purpose like counter or for storing offset

dressing modes etc. The spec:aJ purpose re
jcular a

gisters are used as segment

intermediate
ddressing modes. The below figure shows

particular ad

index registers or as offset storage registers for parti
gister set into

register organization of 3086. We will categorize the re four groups as follows:

s
axX [AH[AL | = SP
BX [BH|BL % BP
cx [calcL = r FLAGS/PSW ST
DX DI
DH] DL = ’
e

General data registers Segment registers Painfits aid indesc fenitar

Register Organization of 8086 Microprocessor

General Data Registers:
The registers AX, BX, CX, and DX are the general 16-bit registers.

AX Register: : .
megﬁ er: Accumulator register consists of two 8-bit registers AL and AH, which
together and used as a 16- bit regist T » which can be combined
B bt it }i’ e;AX_ AL in this case contains the low-order byte of the word, and
- €. or
ccumulator can be used for 1/O operations, rof -
. , rotate and string

manipulation.
g

10

fepister: This register is mainly used as a base register, 1t holds the starting base location of a

fory region within 2 data segment, It is used as offset storage for forming physical address in case of

fiin addressing mode,

K Register: 1t1s used as default counter or count register in case of string and loop instructions,

X Register: Data vegister can be used as a port number in 1/0 operations and implicit operand or
| gestination in case of few instructions. In integer 32-bit multiply and divide instruction the DX register

contains hiT,h-m'dcr word of the initial or resulting number.

Segment Registers:

To complete 1Mbyte memory is divided into 16 logical segments. The complete 1Mbyte memory

segmentation is as shown in figure. Each segment contains 64K byte of memory. There are four segment
registers.
Code Segment (CS) is a 16-bit register containing address of 64 KB segment with processor instructions.
The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP)
register. CS register cannot be changed directly. The CS register 1 automatically updated during far jump,
far call and far return instructions. It is used for addressing @ memory location in the code segment of the

memory, where the excecutable program is stored.

Stack Segment (SS) is a 16-bit register containing address of 64KB segment with program stack. By
default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP)
registers is located in the stack segment. SS register can be changed directly using POP instruction. It is
used for addressing stack segment of memory. The stack segment is that segment of memory, which is

used to store stack data.

Data Segment (DS) is a 16-bit register containing address of 64KB segment with program data. By
default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index
register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS

instructions. It points to the data segment memory where the data is resided.

Extra Segment (ES) is a 16-bit register containing address of 64KB segment, usually with program data.
By default, the processor assumes that the DI register references the ES segment in string manipulation
instructions. ES register can be changed directly using POP and LES instructions. It also refers to segment

which essentially is another data segment of the memory. It also contains data.

11

b FEFEH

LT Lo

n&%‘%_.,

o I

il

sk b b H
£y &y

LN B
spppull
PRl B

LR N o

iR AOT
AFIFT I

ol L L5
I

oo) |
QOQOOEL /’—J (HEC HASE/

Pointers and Index Rci{islc}‘s: o
Ihe pointers 11 [, 8P uetially contain

within the particular segmenls.

The pointers conain

offsets within the code, data and stack segments respectively.

g to program slack in stack segment,

Stack Pointer (SP) is a 16-bit register pointin
g to data in stack segmenl. P register it

Base Pointer (BP) is a 16-bit register pointin

based, based indexed or register indirect addressing.
Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect

addressing, as well as a source data addresses in string manipulation instructions.
Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect

usually used for

addressing, as well as a destination data address in string manipulation instructions

Flag Register:

5 14 13 1201010 9 8 7 6 5 4 3 9
XXX b I
X |OF | DF IF]TF]S_F ZF| X |AC] X [PRI X [Cy

\
Y / ; ,
X = Undefined S

Flag Register of 8086

12

[Register determines the current state of the processor. They are modified automatically by CPU
_ mamemﬂ‘ica] operations, this allows to determine the type of the result, and to determine conditions

sfer control to other parts of the program.

¢ 8086-11ag register as shown in the fig 1.6. 8086 has 9 active flags and they are divided into two

egories:
1. Conditional Flags/ Status Flags

3 qontrol Flags

Conditional Flags

Conditional flags ar¢ as follows:

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer arithmetic. It is also used
. multiple-precision arithmetic. :

Auxiliary Flag (AC): If an.opcration performed in ALU generates a carry/barrow from lower nibble (i.e.
DDA p R nibble (ie. D4 — D7), the AC flag is set i.e. carry given by D3 bit to D4 is AC flag.

This is not a general-purpose flag, it is used internally by the Processor to perform Binary to BCD

conversion.
parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of the result

contains even number of 1s, the Parity Flag is set and for odd number of 1’s, the Parity flag is reset.
Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is reset.

Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If the result of
operation is negative, sign flag is set.

Control Flags
Control flags are set or reset deliberately to control the operations of the execution unit. Control flags are

as follows:

Trap Flag (TF): It is used for single step control. It allows user to execute one instruction of a program at
a time for debugging. When trap flag is set, program can be run in single step mode.

Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable interrupt of 8086 is
enabled and if it is reset, the interrupt is disabled. It can be set by executing instruction SIT and can be
cleared by executing CLI instruction.

Direction Flag (DF): It is used in string operation. If it is set, string bytes are accessed from higher

memory address to lower memory address. When-it is reset, the string bytes are accessed from lower
memory address to higher memory address.

13

1
L]

L

ation unit (EU)- \
Memory addressing logi,
nd Address regis:ers’

) . rocessor: Uis dice . .
ernal Architecture of $086 Micro quré. The 8086 CPU 1s divig,

o the fi
" 1 . own in t
['he internal architecture 8086 microprocessor 15 as sh -’ -
; . -+ (BJU) an
1o o independent functional parts, the Bus interface unit (B —
- ic. Segmen
The Bus Interface Unit contains Bus Interface Logic, S¢8

a
s : contﬂlns
and a Six-byte instruction object code queue. The execution unit

the Arithmetic ang Logic Unit, the Control Unit and flags.

- ions from me
[U sends out address, fetches the instructions - - piT
_ e
memory, and writes the data to ports and memory. In other words,

mory, read data from ports ang

and addresses on the buses for the execution unit. . structions or data from, decodes
The execution unit (EU) of the 8086 tells the BIU where to fetch instr

s vt i tions
. . s i ich directs internal opera :
Instructions and executes instruction. The EU contains control circuitry wh f actions which the EU
: ies of actions
A decoder in the EU translates instructions fetched from memory into a ser R, XOR, i t
Increment,
carries out. The EU is having a 16-bit ALU which can add, subtract, AND, OR, E

; i i ion or executing an
decrement, complement or shift binary numbers. The EU is decoding an instruction o B a

instruction which does not require use of the buses.

The Queue: The BIU fetches up to 6 instruction bytes for the followin

g instructions. The BIU stores these
prefetched bytes in first-in-first-

much faster than sending out an address to the systemn memory and waiting for memory to send back the
next instruction byte or bytes, LL instructions, where the queue must be

fetch-and-

Except in the case of JMP and CA

dumped and then reloaded starting from 4 new address, this pre queue scheme preat] d
' - ; | speeds u
processing. Fetching the next 1nstruction while the current -l ’

Instruction executes g called pipelining,

14

S0
e —— ’ Momory addresa and da 1\
/ bus nlordace .
o Intomal dala bus -—>
<,,_r-«- —— T DR
ol I ' l‘
'8 A Nanism (addor)
l | WE—— Instruction byte
¥ J_ 1 E‘: - — queue 8 byles
il —=
] -
¢ DS _
A ss, (]
E ~ ES
N —®
|
TL
) @ e T N “>
- Intorna) dath Bu e o T L
I\r Decoding
e | circult
2 15 0 }
C| ax| AH AL i
7| Bl L
Il ox{en | ct ~ 2 E
N D:)(DH DL ALU (18) g
.78 sSP v, ¢
‘U BP I L& r
N S| :
Tl D! | 1
Y
R Flags (16) K—— |
O
Timing and control
Clock and control
signals

Fig 1: Internal Architecture of 8086 Microprocessor

15

Word Read > 2 ds will be
cation.16-bit Wor Storeq in e ;

R “on Ide lo
Each of 1 MB memory address of 8086 represents 8 byte w 8086
is stored at an even address, ©an reg 3 s

consecutive memory locations. IF first byte of the data

entire word in one operation. tgtﬁe
For example, if the 16-bit data is stored at even address 00520H is 9634H B
ek o d stores the data in BH 9
8086 reads the first byte and stores the data in BL and reads the 2nd byte an i
BL= (00520H) i.e. BL=34H
BH= (00521H BH=96H |
If the first byt(e of the :!ata is stored at an odd address, 8086 needs tWoO 0per§tions to read the 16-bit E{ata‘
For example, if the 16-bit data is stored at even address 00521H is 3897H
MOY BX, [00521H] '
ation and stores the data of 00521y

In first operation, 8086 reads the 16-bit data from the 00520H loc
location in register BL and discards the data of 00520H location In 2™ operation, 8086 reads the 16 bit

data from the 00522H location and stores the data of 00522H location in register BH and discards the data

of 00523H location.
BL= (00521H) 1.e. BL=97H
BH= (00522H) BH=38H

Byte Read:
MOYV BH, [Addr]

For Even Address:

Ex: MOV BH, [00520H]

8086 reads the first byte from 00520 locations and stores the data in BH and reads the 2™ byte from th

00521H location and ignores it yte from the
BH = [00520H]

For Odd Address
Ex: MOV BH, [ﬂDSZJ.H]

-

8086 reads the first byt f
. yte from 0052014 location ang ignores i
locations and store ho dgg o It and reads the pnd byte from th 00521
e

BH = [0052]] /

16

e

] Address
dresses 2 segmented memony. The complete physical address which is

. 2 :-@-Eits fong i
ffset registers each of the size 16-bit. The content o .

fa segment register also

of an ofiset register also called as offset address. T
>3- 10 get lotal

bble OH to segment address and add offset address. The figure <l
ure shows

GENERATION OF 20-BIT PHYSICAL ADDRESS

LOGICAL ADDRESS

SEGMENT REGISTER 0000
i ADDER /

e

20 BIT PHYSICAL MEMORY ADDRESS

Physical Address Calculation (i):

cs P

Logic_al Address =

Start with CS. s Nl Bl i
Shift left CS. ol f il
Add IP. 9|5|F|3 T
Physical address = 2 | E(5(F|3

17

F

Physical Address Calculation (i1): | 0{

v
> If DS = 7FA2H and the offset is 4385H

. The logical address:
7FA2:438E

. The physical address:
7FA20 + 438E = 83DAE

. The upper range of the data segment:
7FA20 + FFFF = 8FA1F

. The lower range of the data segment:
7FA20 + 0000 = 7FA20

8086/8088 MPU MEMORY

P Instruction Pointer 000000y,

CS | Code Segment Register

DS Data Segment Register
S8 Stack Segment Register I

ES Extra Segment Register [

¥

Code Segment (64K b)

A 4

Data Segment (64Kb}

—

Stack Segment (64Kb)

Extra Segment (64Kb)

FFFFF[5

18

Physical memory

ongu A CS‘.
Ofiset IP,
!
[
| 1AD00 64 KB CSz _
0000.1A01 Offset IP,
! Segment 2
64 KB
FFFF
2500 7 -—CS, - \
I 00Co . |~ ofsetIP e
Segment 2 64 KB
l_ FFEF FFFF ad
. ?
* (a) Nonoverlpping Segments y (b) Overlapping Segments

General Bus Operation:

- The 8086 has a combined address and data bus commonly referred as a time multiplexed address and
cata bus.

- The reason behind multiplexing address and data over the same pins is the maximum utilization
of processor pins and it facilitates the use of 40 pin standard DIP package.

- The bus can be de-multiplexed using a few latches and transceivers, whenever required.

19

\emory write cycle—_)|
\Memory read q.‘rle__-—!pq—-——-l-—'T:l nl T, I

T T*l TJI T“l -'I:-I- Tl

Mhhnnig

1
o |

=\ g\

: Ap-Ap 3-57 AI!I'AIE SJ“SF

AT X b D X

! BHE Bus reserve i
Addidan X' X FoDataln y % X DataOutD=Dy)("

: AQ'AIS ’ : ' D]g-Dn Ag-ﬁh; D];—Dg
RDINTA | \ I

; | Ready
REMPH[}}':
DIR | Wait i Wait
DER—— :

WR i *=Memory access time—» \ /

T2, T3, T4. The address is transmitted by the processor duri

ng T1. It is present on the bus only for one
cycle. The negative edge of this ALE pul

se is used to Separate the

) _ address and the data or status
information. In maximum mode, the status lines So, 51, B are used to i,

dicate the type of operation.
Status bits S3 to S7 are multiplexed with higher ordey address bits 5

nd the BHE signal. Address is
valid during T1 while status bits 83 to S7 are valid duﬁng) ﬂ'H‘OUgh

T4, B

i u_-::-fi

20

MUM MODE 8086 SYSTEM AND TIMINGS: -
7

smum Mode

In 2 minimum mode 8086 system, the microprocessor 8086 is operated in minimyyy mode by

strapping its MN/MX pin to logic 1.

. . . ip itself,
. = Tn this mode, all the control signals are given out by the microprocessor chip itself

In 4 minimum mode S086 system, the microprocessor 8086 1s operated in minimum mode by

: s ntrol signals are given out b
strapping its MN/MXpin to logicl. In this mode, all the co y the

ICTO: i ini de system. The remainj
; - e . n the minimum mo . Th aibisii
processor chip itself. There is a single microprocessor ! g

) 3 me
components in the system are latches, transceivers, clock generator,

of chip selection logic may be required for selecting memory or /O devices,

mory and /O devices. Some type
depending upon the address

map of the system.
The latches are generally buffered output D-ty
for separating the valid address from the multiplexed address/data signals and are controlled by the ALE

signal generated by 8086. Transceivers are the bidirectional buffers and sometimes they are called as data

pe flip-flops, like, 74LS373 or 8282. They are used

amplifiers. They are required to separate the valid data from the time multiplexed address/data signal.
They are controlled by two signals, namely, DEN and DT/R. The DEN signal indicates that the valid data

is available on the data bus, while DT/R indicates the direction of data, i.e. from or to the processor. The

system contains memory for the monitor and users program storage. Usually, EPROMs are used for
monitor storage, while RAMs for user’s program storage. A system may contain VO devices for
communication with the processor as well as some special purpose I/0 devices. The clock generator
generates the clock from the crystal oscillator and then shapes it and divides to make it more precise so
that it can be used as an accurate timing reference for the system. The clock generator also synchronizes
some external signals with the system clock. The general system organization is shown in Fig. 1.1. Since it
has 20 address lines and 16 data lines, the 8086 CPU requires three octal address latches and two octal
data buffers for the complete address and data separation.

The working of the minimum mode configuration system can be better described in terms of the
timing diagrams rather than qualitatively describing the operations. The opcode fetch and read cycles are
similar. Hence the timing diagram can be categorized in two parts, the first is the timing diagram for read
cycle and the second is the timing diagram for write cycle. Fig 1.1(a) shows the read cycle timing
diagram.

The read cycle begins in T1 with the assertion of the address latch enable (ALE) signal and also

M/I0 signal. During the negative going edge of this signal, the valid address is latched on the local
bus. The BHE and A0 signals address low, high or both bytes.

21

1]%

/+ From T1 to T4, the M/IO signal indicates a memory of I/O operation.

| bus and is sent to the output. The bus is then tri-gyy,

+ - At T2 the address is removed from the loca out
n T2. The read (RD) signal causes the addresey

The read (RD) control signal is also activated |

device to enable its data bus drivers.

S lhe read Slgnal lo]l’gi] ICUEI, lhe addlessed de‘ -

ressed device Will drive ip,

READY line high, when the processor returm

1o i ; ;
will again tri-state its bus drivers.

Hoh

— >~ Clk MNfliX <—— VCC
oss [] RRese! M10 _
iNTA =
CLOCK|—>~ d = —_—
GEN Ready RD
W
—{RES 8086 DEN AR -
ALE >15TB :
<~_—_—-J\ T ADDR
V] :
DT/ BHE Pl A
D D
p| [_Ip .
i g B
iR ' U u
G s S
: 1 Transceivars -
j el B
Y. ¥ YAINSY Y. Y 3 Y
RD WR Csy IJGELEEHE)—E ¢S RD WA
rRAM CS_ EPROM 10
J
9t 4t 9t
DATA BUS ¥>

Fig 1.1: Minimum Mode 8086 System

Fig 1.1 (b) shows the write cycle timing diagram. A write cycle also begins with the assertion of
ALE and the emission of the address. The M/IO signal is again asserted to indicate a memory or /O
operation.

In T2 after sending the address in T1 the processor sends the data to be written to the addressed
location.

22

. | ginning of
12 (unlike RD is somewhat delayed in T o provide time for floating) /0

I The BHE and A0 sj
1gnals are used 1o select the proper byte or bytes of memory or

y /0 w
read or written. The M/To word to be

RD and WR signals indicate the types of data transfer as specified in

Table
- -
| Mo | ® | wg Transfer Type
0 0 1 /O read
0 1 0 1/O write
] 0 || Memory read
| 1 0 Memory write J
CLK —r[

l T, 1 T2 | Ty | o A

w}
2
)
1
|
i
{
-‘_,.-‘
.

Fig.1.1 (a): Read Cycle Timing Diagram for SRRk M

23

A L L
] Ty -)
" ax
i ‘ff'”\/
nE —
= X___ "% X

AodiStEes J

l""""' Aﬁ—éw

l"-—-.—_ 5
—""”}\ Vialics data Dys - Do /(
: __-—-.-."

= ;‘.
R

Fiv.1.1 (b): Write Cycle Timing Diagram for Minimum Mode

TOLD Response Segquence
1 T2 1 T2 1 721 Tw 1 T4 1 TL |

i

HLDA / __

Fig 1.1(c): Bus Request and Bus Grant Timings in Minimum Mode System

The HOLD pin is checked at the end of each bus cycle. If it is received active by the processor

hefore T4 of the previous cycle ar duning T1 state of the current cycle, the CPU activities HLDA in the
n=x1 clock cycle and for the succseding bus cycles, the bus will be given to another requesting master the

comrol of fhe bus s not regained by the processor until the requesting master does not drop the HOLD pin
Jow. When fhe request 3s dropped by the requesting master, the HLDA is dropped by the processor at the

wailing 2dge of the next clock 2s shown in fig 1.1 (c).

24

DL 8086 SYSTEM AND TIMINGS:

" re maximum mode ‘ |
n the de, the 8086 is operated by strapping the MN/MX pin to ground,

his mode s |
In th » the processor derives the status signal 82, Sty g, Another chip called bus controfjer

derives the control signal using this status information.

+ Inthe maxi i ke svste .
aximum mode, there may be more than one microprocesser in the system configuration.

|

In the maximum mode, the 8086 is operated by strapping (he MN/MX pin to ground. In this mode,

the processor derives the status signals Sp, S and So. Another chip called bus controller derives the control

signals using this status information. In the maximum mode, (here may be more than one MICIOProcessor
in the system configuration. The other components in the system are (he same as in the minimum mode

system. The general system organization is as shown in the figl k.
\trol signals like RD and WR

The basic functions of the bus controller chip IC 8288, is to derive ¢o!

(for memory and 1/O devices), DEN, DT/R, ALE, etc. using the information made available by the

processor on the status lines. The bus controller chip has input lines §,, § and So and CLK. These inputs

DEN, DT/R, MWTC, AMWTC, TORC, 10WC

to 8288 are driven by the CPU. It derives the outputs ALE,
and ATOWC. The AEN, 0B and CEN pins are especially useful for multiprocessor

systems. AEN and IOB are generally grounded. CEN pin is usually tied to +5V.

The significance of the MCE/PDEN output depends upon he status of the IOB pin. If IOB is

grounded, it acts as master cascade enable to control cascaded 8259A,; else it acts as peripheral data enable

used in the multiple bus configurations. /N TNTA pin is used to issue two interrupt acknowledge pulses to the

interrupt controller or to an interrupting device.

TORC, TOWC are I/0 read command and I/O write command signals respectively. These signals
enable an 1O interface to read or write the data from or to the addressed port. The MRDC, MWTC are

memory read command and memory write command signals respectively and may be used as memory

read and write signals. All these command signals instruct the memory to accept or send data from or to

the bus. For both of these write command signals, the advanced signals namely Alawc and AMWTC
are
available. They also serve the same purpose, but are activated one clock cycle earlier than the TOWC and
: an

FIWTC signals, respectively. The maximum mode system is shown in fig. 1.2

25

B ol
& oEN |
S, p OIM contnoLous__ S Bg;
3"_ r I(J_l:lp__
A 0 oW
o Rﬁ-ﬂ -5-. n — Y y —————
Coaeratos i
(317 -o=w CX S |
—wlany —>{ Reaty 2
i 8088
: A.D.‘AD”, /'
A A \.-"‘
OHE l
A-Do'wtl
osu-{:o

Fig 1.2: Maximun Mode 8086 System

—_—
|

I Tl Tl Ty LYk Ty |
o L I
/) Ny

Oue bus cytle

ALE
5:-5 Active X imactive X Active
Add/Status _) < BOE, A — A1s AX Si'm 5‘} .
Add/Data ... @ {Dis=Dp Deecorescrss
MRDC \ / -

DT /K™ __——\ | | /

DEN"

Fig. 1.2 (a): Memory Read Timing in Maximum Mode

26

Active

ADD/DATA HAli‘J\U Data out Dis— Do
AMWC o AIOWC

MWTC or IOWC l\—//’//’__
io

//’m"h”_

DT/R
DEN

Fig. 1.2 (b): Memory Write Timing in Maximum Mode

The maximum mode system timing diagrams are also divided in two portions as read (input) and

grams. The address/data and address/status timings are similar to the minimum

write (output) timing dia
The only difference lies in the status signals used

mode. ALE is asserted in T1, just like minimum mode.
and the available control and advanced command signals. The fig. 1.2 (a) shows the maximum mode

timings for the read operation while the fig. 1.2 (b) shows the same for the write operation.

Timings for RQ/GT Signals: -

The request/ grant response Sequence contains a series of three pulses as shown in the timing
diaeram. When a request is detected for valid HOLD request are satisfied, the processor issues a grant
pulse over the RO/GT pin immediately during the T4 (current) or T1 (next) state. When the requesting
master receives this pulse, it accepts the control of the bus. The requesting master uses the bus till it

1
requires. When it is ready to relin uish the bus, it send
q s a release pulse to the processor (host) using the

RQ/GT pin.

27

T2 IT2!T3!T4I

Clk _/

RQ/GT

l f LI T s
| Another master CPU grant bus Master releases
Another mi

request bus access

Figl.2 (¢): RQ/GT Timings in Maximum Mode

I/O Addressing Capability:

—

IORD

g-hit10
Aéddress In o
|0 instruct D

Direct) / 5

t » A-Ar & AgAss Selact . 64 KB
= Asg-ap=0 Loglc

[

a0as

16-bit 1O
Address in !‘

Ragisier Ox
Oy D
et ﬁrbi’s)

g

Dala
Al &-bit
Ax 16-blt

IOWR

The 8086 can generate 16-bit of VO address. Thus, it can address up to 64 Kbytes 1/0 locations or
32K word 1O locations. The 16-bit /O address appears on A0 to A5 address lines; A16 to A19 lines are
et logic O during the 10 operations. The 16-bit DX register is used as 16-bit I/0 addre;s pointer to addr
Up to 64K devices in in-direct addressing mode. The VO instructions with direct addressi >
directly address one or two of the 256 I/0 byte locations, essing mode can

I/O ports are addressed in the same m
anner as memory locati
transferred on the D7 - DO bus lines and Odd addressed bﬁe?ozc;tllglis'[fgven addressed bytes are

28

The mICIOPrOCESSors allow p
or
i task/work. The proce mal program execuion to be interrupted in order lo carry out a
L | 3S0r can be interrupted in the following WAYS
i) by an external signal generateq b ;
Y @ peripheral,

ii) by an intemal signal
' &hal generated by a special instruction in the prograim;
1n which oceurs while executing an

iii) by an internal si
I signal generated due to an exceptional conditio
an exceplional condition which

instruction. (F)
(For example, in 8086 processors, divide by 2€r0 is

initiates type 0 i i
ype 0 interrupt and such an interrupt is also called execution)

on to carry out a specific

In -
general, the process of interrupting the normal program execul

task/work is referred to as interrupt
nal device Of by a signal generated

The interrupt is initiated by a signal generate 4 by an exter
t signal it SlopS execut

ing current

int . . -
ernal to the processor. When a microprocessor receives, &1 interrup

(P, CS and flag registers in case of 8086)

normal program, save the status (or content) of various registers

edure in order t0 perform the specific task/work

in stack and then the processor executes a subroutine/proc
n interrupt is also

requested by the interrupt. The subroutine/procedure that is executed in response toa

called Interrupt Service Subroutine. (ISR). At the end of ISR, t
and the processor resumes the normal

he stored status of registers in stack is

program execution from the point

restored to respective registers,
{instruction) where it was interrupted.
plement interrupt driven data transfer scheme. The interrupts

The external interrupts are used to im
to implement system

developed by
through

generated by special instructions are called software interrupts and they are used

services/calls (or monitor services/calls). The system/monitor services are procedures

system designer for various operations and stored in memory. The user can call these services

software interrupts. The interrupts generated by exceptional conditions are used to’ implement error

conditions in the system.

Interrupt Driven Data Transfer Scheme
The interrupts are useful for efficient data transfer between processor and peripheral. When a

peripheral is ready for data transfer, it interrupts the processor by sending an ap;ropriate signal. Upon

receiving an interrupt signal, the processor suspends the current program execution, save the status in

stack and executes an ISR to perform the data transfer between the peripheral and processor. At the end of

ISR the processor status is restored from stack and processor resume its normal program execution. Thi
s

type of data transfer scheme is called interrupt driven data transfer scheme

29

ST O »
r and peripheral devices can be implemented either

The data transfer between the processo o
odically poll ¢

i Il
polling technique or by interrupt method. In polling technique, the processor has to p€

check the status/readiness of the device and can perform data transfer only when the device 'is ready. In

polling technique, the processor time is wasted, because the processor has to suspend its work and chcck

the status of the device in predefined intervals.

Altematively, if the device interrupts (he processor to initiate a data iransfer whenever it is ready

i ck
then the processor time is effectively utilized because the processor need not suspend its work and che

in predefined inter vals. For an example, consider the data transfer from a keyboard

the status of'| the device 1

to the processor.
p ce in every 10 milli seconds for a key

Normally a keyboard has to be checked by the processor on
pend its work and then check the

press. Therefore, once in every 10 milli seconds the processor has to sus

keyboard for a valid key code. Alternatively,
nerated. In this way, the processor need not wa

the keyboard can interrupt the processor, whenever a key is

ste it’s time to check the
pressed and a valid key code is ge

keyboard once in every 10 milli seconds.

Classification of Interrupts
In general, the interrupts can be classified in the following three ways:

1. Hardware and software interrupts
2. Vectored and Non-Vectored interrupt

3. Maskable and Non-Maskable interrupts

The interrupts initiated by external hardware by sending an appropriate signal to the interrupt pin
of the processor is called hardware interrupt. The 8086 processor has two interrupt pins INTR and NML
The interrupts initiated by applying appropriate signal to these pins are called hardware interrupts of 8086.

The software interrupts are program instructions. These instructions are inserted at desired
locations in a program. While running a program, if software interrupt instruction is encountered then the
processor initiates an interrupt. The 8086 processor has 256 types of software interrupts. The software
interrupt instruction is INT n, where n is the type number in the range 0 to 255.

When an interrupt signal is accepted by the processor, if the program control automatically
branches to a specific address (called vector address) then the interrupt is called Vec-t-'ored interrupt. The
automatic branching to vector address is predefined by the manufacturer of processors. (In these vector
addresses the interrupt service subroutines (ISR) are stored). In non-vectored interrupts the interrupting
i:Ievicc should supply the address of the ISR to be executed in response to the interrupt. All the 8086
interrupts are vectored interrupts. The vector address for an 8086 interrupt is obtained from a vector table
implemented in the first 1kb memory space (00000h to 03FFFh),

30

) P,ac::s:;or has the faci!ily for aceepfin

B Or rejecting | e It

i i srdwinre It
ject an interrupt

of o rej

. l'u.;u,.”r
IS rerlil"[‘ud 10 ﬂ.ﬂ ”} ifi”l)': ”".

ﬂ':ki!]}! Oor disahl | ot ihiitin e v

i J ' Nt el 4 B Gt s,
interrupt is referre ’ Yl 1
1 an interrup d 10 ag Unmasking or e

nabling, Iy 8086 e interpt (g 00) i e
p unmask Of enable all hardware

ntermipts ang |p |

NG e

ts Lt NMI 8 Clenred (o zero 1o sk or disibile it ygiapy
. excep
mtcﬂ'up .

The interrupts whose request cin he ¢

: ither necepted o rejected by W processaor e oalfo
naskable l']'llcrl'upls. The inte

TPt whose request has (o be definitely acceptedd (0f calntal b 1ejestdy by

[}
e e A ¢ :
1€ processor are called non-maskah|e interrupts, Whenever o requesi snade by non-maskable internga,

» .y 5 ’ TP -
1€ processor has to definitely Heeept that request and pervice that interupt by stspending its current
rogram and executing an ISR, In BOKG processors, all the hardvare interrupts initiated through I pin

re maskable by clearing interrupt flag (15), ‘The intersupt. initiated through AT pin and all soltvare

nterrupts are non-maskable,

—-—

sources of Interrupts in 8086

An interrupt in 8086 can come from one of the following three sources,

. One source is from an external signal applied to NMI or INTR input pin of the processor. The imerrupts
initiated by applying appropriate si gnals (o these input pins are called hardware interrupls,

2. A second source of an interrupt is execution of the interrupt instruction “INT n", where n is the type
number. The interrupts initiated by "INT n" instructions are called software interrupts,

3. The third source of an interrupt is from some condition produced in the 8086 by the execution of an
instruction, An example of this type of interrupt is divide by zero interrupt, Program execution will be
automatically interrupted if you attempt to divide an operand by zero. Such conditional interrupts are

also, known as exceptions

Interrupts Cycle of 8086:

The 8086 microprocessor has 256 types of interrupts, INTEL has assigned a type number to each
interrupt. The type numbers are in the range of 0 to 255. The 8086 processor has dual facility of initiating

these 256 interrupts. The interrupts can be initiated either by executing "INT n* instruction where n is the

type number or the interrupt can be initiated by sending an appropriate signal to INTR input pin of the
Processor.

For the interrupts initiated by software instruction” INT p ", the type m;mge,. is specified by the
instruction itself. When the interrupt is initiated through INTR pin, then the processor rung an interrupt
acknowledge cycle to get the type number. (i.e., the interupting device should supply the type number

o edge cycle).

their designated types are summarized in figure by illustrating the

layout of their pointers within the memory. Only the first fiye types have explicit definitions:
L4

through D0- D7 lines when the processor requests for the same through interrupt acknow)
The kinds of interrupts and

the other

31

I.H?F':S may be g

associateq With ;

soure, il 18 seen that the ,3‘
2rom the HEUre '
¢d by h“’“‘”’“ﬂl instructions or external interrupts: Froi

?
Ldivisioy crror interrupt is 0. e current contents of the PSW;
There fore, if, 4

f = ill push
! division by 0 is attempted, the processor Will p
CS and [p into (he ¢

and continue
0000 to 00003, an

tack, Gill the 1P and CS registers from the addresses 0

eXecuting at the

address indicated by the new contents of 117 and Cs.
A division error

CXceeding the range,

[.

¥ i [ﬂtus-
regardless of the I (Interrupt flag) and TF (Trap flag) s ly interrupt controlled
) _ o : only interr
The type 1 nterrupt is the single-step interrupt (Trap interrupt) and is the only it i s
i . ; ; > next mnstructi
by the TF fag. If the TF flag is enabled, then an interrupt will oceur at the end of the

_ : .The single step
Will cause a braneh to the location indicated by the contents of 00004H to 00007H The sing

: : " . e is program after
interrupt is used primarily for debugging which gives the programmer a snapshot of his prog

each instruction is excented.

" i ; . . i 1at can
The type 2 interrupt is the non-maskable external interrupt, It is the only external interrupt tl

oceur regardless of the 11 flag sciting, |

Lis caused by a signal sent to the CPU through the non-maskable
interrupt pin.

The remaining interrupl types correspond (o interrupts instructions imbedded in the interrupt

morto external interrupts. The interrupt instructions are summarized below and their interrupts are
not controlled by the [IF (Tag.

progra

ar
Intesrupt .]
TYPE SS5p 2
r | ‘ = MANFPSW
— SS8P2) f e
| [PSW | | MAIN CS]] MaINIp | | SSUSP-) K =
e A v
.'
[I
Siatus while executing MAIN [SRCSISR P ISR
Programme —_ .,
UUBB’LCGFFH e e o
| ' Jnternpt
QUDGI(4N+2) | [BRCS l\;&&;:
= ODOB:(4N} —— |SRIP
0e00:0000

h@amry Bank
Interrupt Response Sequence

32

Interrupl
Type No.

Podoter
[t
ype O

Pownter
l 1]
vpe |

Polner
oy
e 2

Puinter
Tor
vpe

Pointer
lor
ped

Pownter
for
type N

Pointer
for
type 255

33

Il
L

Conlents

New (1P) for type O

_Ncw (C'S) for type O

New (1P for type |1

S—

New (CS) for type |

New (IP) for type 2

New (C8) for type 2

New (1P) for type 3

New (CS) lor type 3

New (IP) for type 4

I"
L
-
"]k
L

New (CS) for type 4

New (IP) for type N

New (CS) for type N

New (IP) for type 255

New (CS) for type 255

Structure of Interrupt vector table of 8086

Address
00000 Reserved lor divide uV g/
00004 Reserved for single siep
trap-TF must he set
00008 Reserved for nonmaskable
interrupt
Reserved for one-byle
0000C interrupt instruction,INT
Reserved for overflow,
] .
Bl INTO instruction
00014 \
4*N Reserved for
two-byte INT
instructions
and maskable
4*N +4 external
interrupls
003FC
J
00400

Interrupt Programming:

ASSUME GS : CODE, DS : DATA

DATA SEFMET
]
|
: ENDS
| EgEﬂE SEGMENT
\ |
|
|
—— INT UIBH
| ~-— |
Adter execubing
Afer expeling ! ;
INT 03H | ISRoeH
|
[|3309H FROC intaru EEWIEE mu]ﬁlﬂ
) SR 'ﬁ:nr E 09H
)
ISRD9H ENDP ——
CCDE ENDS
END
Maln programm ISk GAH I3F 0BH
| - X (IF sal agaln} i
| I
i / ':
1 I
INT OAH * INT @BH :
I
z \\ :
! :
Mai pregramne eads ISR OAH ends ™ ISR 0EH ends

34

Transfer of Control for Nested Interrupts

UNIT - 1I: 8086 PROGRAMMING

Program Development Steps:

Major steps in developing an assembly language program

* Defining the Problem

* Representing program operations

* Finding the right instructions

* Writing a program
Defining the problems

* Find out the problem.

For example: Sensing temperature, detecting fire, detecting smock, decoder-encoder,
Intelligent machine controller etc.

Representing program operations

* Formula or sequence of operations used to solve a programming problem is called as the

algorithm.
* There are two ways of representing algorithms:
- Flowchart
- Structured programming and pseudo code

Finding the right instructions

* Instructions in 8086 are mainly divided into following categories

» Data Transfer Instructions

* Arithmetic Instruction

* Bit manipulation Instruction

* String Instruction

* Program execution transfer Instruction

* Processor control Instruction
Writing a program

* We need to do the following steps to write the program effectively:

- INITIALIZATION INSTRUCTIONS: used to initialize various parts of the program like
segment registers, flags and programmable port devices.
- STANDARD PROGRAM FORMAT: it’s a tabular format containing ADDRESS, DATA
OR CODE, LABELS, MNEM, OPERAND(S) and COMMENTS as the columns.

- DOCUMENTATION: you should document the program. E.g. each page of the document
contains page number and name of the program, heading block containing the abstract about

the program, comments should be added wherever necessary.

Instruction Set of 8086:

The 8086 instructions are categorized into the following main types.

Data Copy / Transfer Instructions

o ®

Arithmetic and Logical Instructions

Branch Instructions

/e ©°

Loop Instructions
Machine Control Instructions
Flag Manipulation Instructions

Shift and Rotate Instructions

= @ oo

String Instructions

a) Data Transfer Instruction:

These types of instructions are used to transfer data from source operand to destination operand.
All the store, load, move, exchange, input and output operations belong to this category.

b) Arithmetic and Logical Instructions:

All the instructions performing arithmetic, logical, increment, decrement, compare and scan
instructions belong to this category.

¢) Branch Instructions:

These instructions transfer control of execution to the specified address. All the call, jump,
interrupt and return instructions belong to this category.

d) Loop Instructions:

The LOOP, LOOPNZ and LOOPZ instructions belong to this category. These are useful to
implement different loop structures.

e) Machine control Instructions:

These instructions control the machine status. NOP, HLT, WAIT and LOCK instructions belongs to
this category.

f) Flag Manipulation Instructions:

All instructions which directly affect the flag register belong to this category. The instructions
CLD, STD, CLI, STI etc. belong to this category.
g) Shift and Rotate Instructions:

These instructions involve the bitwise shifting or rotation in either direction with or without a
count in CX.

h) String Instructions:

These instructions involve string manipulation operations like load, scan, compare, store etc. These
instructions are only to be operated upon the string.

a) Data Copy / Transfer Instructions: -

MOV:

This instruction copies a word or a byte of data from some source to a destination.
The destination can be a register or a memory location. The source can be a register, a memory location,
or an immediate number.

MOV AX, BX

MOV AX, 5000H

MOV AX, [SI]

MOV AX, [2000H]

MOV AX, 50H [BX]

MOV [734AH], BX

MOV DS, CX

MOV CL, [357AH]

Direct loading of the segment registers with immediate data is not permitted.

PUSH: Push to Stack
This instruction pushes the contents of the specified register/memory location on to the stack. The stack

pointer is decremented by 2, after each execution of the instruction.

Ex:- PUSH AX

PUSH DS
PUSH [5000H]

PUSHAX
AL
AH 2
55 i

22 H

55 H

XX

Physical
Address

|

2 FFFD
2 FFFE
2 FFFF

Fig: Push data to Stack memory

POP: Pop from Sack

SS = 2000H
SP

J

FFFD
FFFE
FFFF

This instruction when executed, loads the specified register/memory location with the contents of the

memory location of which the address is formed using the current stack segment and stack pointer.

The stack pointer is incremented by 2
Ex:- POP AX

POP DS

POP [5000H]

POP AX
22 | AL -
aH s8] “°

Physical
Address
22 H 2 FFFD
S5 H 2FFFE

Fig: Poping Register content from stack memory

XCHG: Exchange byte or word

55 = Z2000H

SR
FFFDH
FFFEH

This instruction exchanges the contents of the specified source and destination operands

Ex: - XCHG [5000H], AX
XCHG BX, AX

XLAT: Translate byte using look-up table
Ex:- MOV BX, OFFSET TABLE

MOV AL, 00H
XLAT 2
—_— 5
(AL) — 5 (BX{
AL [BX+AL] Base of table

Simple input and output port transfer Instructions:

IN:
Copy a byte or word from specified port to accumulator.
Ex:- IN AL,03H
IN AX, DX
OUT:
Copy a byte or word from accumulator specified port.
Ex:- OUT 03H, AL
OUT DX, AX
LEA:
Load effective address of operand in specified register.
[reg] offset portion of address in DS
Ex: - LEA reg, offset

LDS:

Load DS register and other specified register from memory.
[reg] [mem]

[DS] [mem + 2]

Ex: - LDS reg, mem

LES:

Load ES register and other specified register from memory.
[reg] [mem]

[ES] [mem + 2]

Ex: - LES reg, mem

Flag transfer instructions:

LAHF:

Load (copy to) AH with the low byte the flag register.
[AH] [Flags low byte]

Ex: - LAHF

SAHF:

Store (copy) AH register to low byte of flag register.
[Flags low byte] < [AH]

Ex:- SAHF

PUSHEF:

Copy flag register to top of stack.

[SP] « [SP] -2

[[SP]] « [Flags]

Ex: - PUSHF

POPF:

Copy word at top of stack to flag register.
[Flags] < [[SP]]

[SP] « [SP]+2

Ex:- POPF

b) Arithmetic Instructions:

The 8086 provides many arithmetic operations: addition, subtraction, negation, multiplication and
comparing two values.
ADD:
The add instruction adds the contents of the source operand to the destination operand.
Ex:- ADD AX, 0100H
ADD AX, BX
ADD AX, [SI]
ADD AX, [S000H]
ADD [5000H], 0100H
ADD 0100H

ADC: Add with Carry
This instruction performs the same operation as ADD instruction, but adds the carry flag to the result.
Ex:- ADC 0100H

ADC AX, BX

ADC AX, [SI]

ADC AX, [5000]

ADC [5000], 0100H

SUB: Subtract
The subtract instruction subtracts the source operand from the destination operand and the result is left in
the destination operand.
Ex:- SUB AX, 0100H
SUB AX, BX
SUB AX, [5000H]
SUB [5000H], 0100H
SBB: Subtract with Borrow
The subtract with borrow instruction subtracts the source operand and the borrow flag (CF) which may
reflect the result of the previous calculations, from the destination operand
Ex: - SBB AX, 0100H
SBB AX, BX
SBB AX, [5000H]
SBB [5000H], 0100H
INC: Increment
This instruction increases the contents of the specified Register or memory location by 1. Immediate data
cannot be operand of this instruction.
Ex:- INC AX
INC [BX]
INC [5000H]

DEC: Decrement
The decrement instruction subtracts 1 from the contents of the specified register or memory location.
Ex: - DEC AX

DEC [5000H]

NEG: Negate
The negate instruction forms 2’s complement of the specified destination in the instruction. The
destination can be a register or a memory location. This instruction can be implemented by inverting each
bit and adding 1 to it.
Ex:- NEGAL
AL =0011 0101 35H Replace number in AL with its 2’s complement
AL=1100 1011 = CBH
CMP: Compare
This instruction compares the source operand, which may be a register or an immediate data or a memory
location, with a destination operand that may be a register or a memory location
Ex:- CMP BX, 0100H
CMP AX, 0100H
CMP [5000H], 0100H
CMP BX, [SI]
CMP BX, CX
MUL: Unsigned Multiplication Byte or Word
This instruction multiplies an unsigned byte or word by the contents of AL.
Ex:- MUL BH; (AX) < (AL) x (BH)
MUL CX; (DX) (AX) « (AX) x (CX)
MUL WORD PTR [SI]; (DX) (AX) « (AX) x ([SI])
IMUL: Signed Multiplication
This instruction multiplies a signed byte in source operand by a signed byte in AL or a signed word in
source operand by a signed word in AX.
Ex: - IMUL BH
IMUL CX
IMUL [SI]
CBW: Convert Signed Byte to Word
This instruction copies the sign of a byte in AL to all the bits in AH. AH is then said to be sign extension
of AL.
Ex:- CBW
AX= 0000 0000 1001 1000 Convert signed byte in AL signed word in AX.
Resultin AX=1111 1111 1001 1000
CWD: Convert Signed Word to Double Word
This instruction copies the sign of a byte in AL to all the bits in AH. AH is then said to be sign extension
of AL.

Ex:- CWD
Convert signed word in AX to signed double word in DX: AX
DX=1111 111111111111
Result in AX =1111 0000 1100 0001
DIV: Unsigned division
This instruction is used to divide an unsigned word by a byte or to divide an unsigned double word by a
word.
Ex:- DIVCL ; Word in AX / byte in CL
; Quotient in AL, remainder in AH
DIV CX ; Double word in DX and AX / word in CX, and Quotient in AX, remainder in DX
AAA: ASCII Adjust After Addition
The AAA instruction is executed after an ADD instruction that adds two ASCII coded operand to give a
byte of result in AL. The AAA instruction converts the resulting contents of AL to a unpacked decimal
digits.
AAA operation:
1) In AL If rightmost nibble is >9 (ie) A to F or Auxiliary Flag=1
ADD 6 to rightmost nibble
2) Clear left nibble form AL.
3) InAHADD 1
4) Set Carry and Auxiliary Carry
Ex:- ADDCL, DL ; [CL] = 34H = ASCII for 4
; [DL] = 38H = ASCII for 8
; Result [CL] = 6CH
AAA ; [AL] =02, unpacked BCD for 2
; [AH] =01, unpacked BCD for 1
AAS: ASCII Adjust AL after Subtraction
This instruction corrects the result in AL register after subtracting two unpacked ASCII operands. The
result is in unpacked decimal format. The procedure is similar to AAA instruction except for the
subtraction of 06 from AL.
AAS operation:
1) AAS checks the rightmost nibble in AL If rightmost nibble is >9 (ie) A to F Or
Auxiliary Flag=1, Then Subtract 6 from rightmost nibble
2) Clear left nibble in AL.

3) Subtracts 1 from AH

4) Set Carry and Auxiliary Carry
Ex:- MOV AL, 34H

SUB AL, 38H ; AX=00FC
AAS ; AX=FFO06 ten’s complement i.e -4 (Borrow one from AH)
OR AL, 30H ; AL=34

AAM: ASCII Adjust after Multiplication
This instruction, after execution, converts the product available In AL into unpacked BCD format.
AAM performs the following operations

1) Divides AL value by 10 (0AH)

2) Stores Quotient in AH

3) Store Remainder in AL

Ex:- MOV AL, 04 : AL =04
MOV BL, 09 : BL =09
MUL BL : AX = AL*BL : AX=0024H
AAM : AH = 03H, AL=06H

AAD: ASCII Adjust before Division
This instruction converts two unpacked BCD digits in AH and AL to the equivalent binary number in AL.
This adjustment must be made before dividing the two unpacked BCD digits in AX by an unpacked BCD
byte. In the instruction sequence, this instruction appears Before DIV instruction.
Operations done by AAD instruction

1) AAD multiplies the AH by 10(0Ah).

2) Then adds the product to AL and clears the AH
Ex:- AX 0508

AAD result in AL 00 3A 58D =3A Hin AL
The result of AAD execution will give the hexadecimal number 3A in AL and 00 in AH. Where 3A is the
hexadecimal equivalent of 58 (decimal).
DAA: Decimal Adjust Accumulator
This instruction is used to convert the result of the addition of two packed BCD numbers to a valid BCD
number. The result has to be only in AL.

Ex:- AL=353H, CL=29H

ADD AL, CL ; AL < (AL) + (CL)
; AL —53+29
; AL «— 7C

DAA ; AL —7C+06 (as C>9)
; AL 82

10

DAS: Decimal Adjust after Subtraction
This instruction converts the result of the subtraction of two packed BCD numbers to a valid BCD

number. The subtraction has to be in AL only.

Ex:- AL=75H, BH =46H

SUB AL, BH : AL — 2 Fy = (AL) - (BH)
;AF =1
DAS ;AL <29 (asF>9,F-6=9)

Logical Instructions:

AND: Logical AND
This instruction bit by bit ANDs the source operand that may be an immediate register or a memory
location to the destination operand that may a register or a memory location. The result is stored in the
destination operand.
Ex: - AND AX, 0008H
AND AX, BX
OR: Logical OR
This instruction bit by bit ORs the source operand that may be an immediate, register or a memory
location to the destination operand that may a register or a memory location. The result is stored in the
destination operand.
Ex:- OR AX, 0008H
OR AX, BX
NOT: Logical Invert
This instruction complements the contents of an operand register or a memory location, bit by bit.
Ex: - NOT AX
NOT [5000H]
XOR: Logical Exclusive OR
This instruction bit by bit XORs the source operand that may be an immediate, register or a memory
location to the destination operand that may a register or a memory location. The result is stored in the
destination operand.
Ex: - XOR AX, 0098H
XOR AX, BX
TEST: Logical Compare Instruction
The TEST instruction performs a bit by bit logical AND operation on the two operands. The result of this

AND ing operation is not available for further use, but flags are affected.

11

Ex:- TEST AX, BX
TEST [0500], 06H

¢) Branch Instructions:

Branch Instructions transfers the flow of execution of the program to a new address specified in the
instruction directly or indirectly. When this type of instruction is executed, the CS and IP registers get
loaded with new values of CS and IP corresponding to the location to be transferred.
The Branch Instructions are classified into two types

1. Unconditional Branch Instructions.

ii. Conditional Branch Instructions.
Unconditional Branch Instructions:

In Unconditional control transfer instructions, the execution control is transferred to the specified
location independent of any status or condition. The CS and IP are unconditionally modified to the new
CS and IP.

CALL: Unconditional Call
This instruction is used to call a Subroutine (Procedure) from a main program. Address of procedure may
be specified directly or indirectly.
There are two types of procedure depending upon whether it is available in the same segment or in another
segment.

1. Near CALL i.e., 32K displacement.

ii. Far CALL i.e., anywhere outside the segment.
On execution this instruction stores the incremented IP & CS onto the stack and loads the CS & IP
registers with segment and offset addresses of the procedure to be called.
RET: Return from the Procedure.
At the end of the procedure, the RET instruction must be executed. When it is executed, the previously
stored content of IP and CS along with Flags are retrieved into the CS, IP and Flag registers from the stack
and execution of the main program continues further.
INT N: Interrupt Type N.
In the interrupt structure of 8086, 256 interrupts are defined corresponding to the types from O0H to FFH.
When INT N instruction is executed, the type byte N is multiplied by 4 and the contents of IP and CS of
the interrupt service routine will be taken from memory block in 0000 segment.
INTO: Interrupt on Overflow
This instruction is executed, when the overflow flag OF is set. This is equivalent to a Type 4 Interrupt

instruction.

12

JMP: Unconditional Jump

This instruction unconditionally transfers the control of execution to the specified address using an 8-bit or
16-bit displacement. No Flags are affected by this instruction.

IRET: Return from ISR

When it is executed, the values of IP, CS and Flags are retrieved from the stack to continue the execution

of the main program.

d) LOOP Instructions:
LOOP Unconditionally

This instruction executes the part of the program from the Label or address specified in the instruction up
to the LOOP instruction CX number of times. At each iteration, CX is decremented automatically and
JUMP IF NOT ZERO structure.
Ex: - MOV CX, 0004H
MOV BX, 7526H
Label 1: MOV AX, CODE
OR BX, AX
LOOQOP Label 1
Conditional Branch Instructions:

When this instruction is executed, execution control is transferred to the address specified
relatively in the instruction, provided the condition implicit in the opcode is satisfied. Otherwise execution
continues sequentially.

JZ/JE Label

Transfer execution control to address ‘Label’, if ZF=1.
JNZ/JNE Label

Transfer execution control to address ‘Label’, if ZF=0
JS Label

Transfer execution control to address ‘Label’, if SF=1.

JNS Label

Transfer execution control to address ‘Label’, if SF=0.
JO Label

Transfer execution control to address ‘Label’, if OF=1.
JNO Label

Transfer execution control to address ‘Label’, if OF=0.
JNP Label

Transfer execution control to address ‘Label’, if PF=0.

13

JP Label

Transfer execution control to address ‘Label’, if PF=1.
JB Label

Transfer execution control to address ‘Label’, if CF=1.
JNB Label

Transfer execution control to address ‘Label’, if CF=0.
JCXZ Label

Transfer execution control to address ‘Label’, if CX=0

Conditional LOOP
LOOPZ / LOOPE Label

Loop through a sequence of instructions from label while ZF=1 and CX=0.

LOOPNZ / LOOPENE Label

Loop through a sequence of instructions from label while ZF=1 and CX=0.

e) Flag Manipulation and Processor Control Instructions:

These instructions control the functioning of the available hardware inside the processor chip. These
instructions are categorized into two types:
1. Flag Manipulation instructions.
2. Machine Control instructions.
Flag Manipulation instructions:
The Flag manipulation instructions directly modify some of the Flags of 8086.
1. CLC — Clear Carry Flag.
1. CMC — Complement Carry Flag.
1ii. STC — Set Carry Flag.
iv. CLD — Clear Direction Flag.
v. STD — Set Direction Flag.
vi. CLI — Clear Interrupt Flag.
vii. STI — Set Interrupt Flag.

Machine Control instructions
The Machine control instructions control the bus usage and execution
1. WAIT — Wait for Test input pin to go low.
ii. HLT — Halt the process.
14

iii. NOP — No operation.
iv. ESC — Escape to external device like NDP
v. LOCK — Bus lock instruction prefix.

f) Shift & Rotate Instructions:
SAL/SHL: SAL / SHL destination, count

SAL and SHL are two mnemonics for the same instruction. This instruction shifts each bit in the specified
destination to the left and 0 is stored at LSB position. The MSB is shifted into the carry flag. The
destination can be a byte or a word.

It can be in a register or in a memory location. The number of shifts is indicated by count.

CF

Ex:- SALCX, 1
SAL AX, CL
SHR: SHR destination, count
This instruction shifts each bit in the specified destination to the right and 0 is stored at MSB position. The
LSB is shifted into the carry flag. The destination can be a byte or a word.

It can be a register or in a memory location. The number of shifts is indicated by count.

0O > &> &> &> &> > > &> @ b

Ex:- SHRCX, 1

MOV CL, 05H

SHR AX, CL
SAR: SAR destination, count
This instruction shifts each bit in the specified destination some number of bit positions to the right. As a
bit is shifted out of the MSB position, a copy of the old MSB is put in the MSB position. The LSB will be
shifted into CF.

www.Jntufastupdates.com 15

Ex:- SARBL,1
MOV CL, 04H
SAR DX, CL
ROL Instruction: ROL destination, count
This instruction rotates all bits in a specified byte or word to the /eft some number of bit positions. MSB is

placed as a new LSB and a new CF.

CF

Ex:- ROLCX,1
MOV CL, 03H
ROL BL, CL
ROR Instruction: ROR destination, count
This instruction rotates all bits in a specified byte or word to the right some number of bit positions. LSB

is placed as a new MSB and a new CF.

Ex:- RORCX,1
MOV CL, 03H
ROR BL, CL

RCL Instruction: RCL destination, count
This instruction rotates all bits in a specified byte or word some number of bit positions to the left along

with the carry flag. MSB is placed as a new carry and previous carry is place as new LSB.

CF

Ex:- RCLCX, 1
MOV CL, 04H
RCL AL, CL

16

RCR Instruction: RCR destination, count
This instruction rotates all bits in a specified byte or word some number of bit positions to the right along

with the carry flag. LSB is placed as a new carry and previous carry is place as new MSB.

CF

Ex:- RCRCX,1
MOV CL, 04H
RCR AL, CL

g) String Manipulation Instructions:

A series of data byte or word available in memory at consecutive locations, to be referred as Byte
String or Word String. A String of characters may be located in consecutive memory locations, where
each character may be represented by its ASCII equivalent.
The 8086 supports a set of more powerful instructions for string manipulations for referring to a string,
two parameters are required.

I. Starting and End Address of the String.

II. Length of the String.
The length of the string is usually stored as count in the CX register. The incrementing or decrementing of
the pointer, in string instructions, depends upon the Direction Flag (DF) Status. If it is a Byte string
operation, the index registers are updated by one. On the other hand, if it is a word string operation, the

index registers are updated by two.

REP: Repeat Instruction Prefix

This instruction is used as a prefix to other instructions, the instruction to which the REP prefix is
provided, is executed repeatedly until the CX register becomes zero (at each iteration CX is automatically
decremented by one).

i. REPE / REPZ - repeat operation while equal / zero.

ii. REPNE / REPNZ - repeat operation while not equal / not zero.

These are used for CMPS, SCAS instructions only, as instruction prefixes.

17

Prefix Used with Meaning
MOVS at whi i
REP Re.peat while not end of
STOS string CX=0
CMPS
REPE/ REPZ CX#0 & ZF=1
SCAS
CMPS
REPNE/REPNZ CX#0 & ZF=0
SCAS
Mnemonic | Meaning Format Operation Flags affected
CLD Clear DF ELD (DF) <0 DF
STD Set DF STD (DF) « 1 DF

MOVSB /MOVSW: Move String Byte or String Word
Suppose a string of bytes stored in a set of consecutive memory locations is to be moved to another
set of destination locations. The starting byte of source string is located in the memory location whose
address may be computed using SI (Source Index) and DS (Data Segment) contents.
The starting address of the destination locations where this string has to be relocated is given by DI
(Destination Index) and ES (Extra Segment) contents.
Ex: - Block move program using the move string instruction
MOV AX, DATA SEG ADDR
MOV DS, AX
MOV ES, AX
MOV SI, BLK 1 ADDR
MOV DI, BLK 2 ADDR
MOV CK, N
CLD ; DF=0
NEXT: MOV SB
LOOP NEXT
HLT
CMPSB/SW: Compare String Byte or String Word
- The CMPS instruction can be used to compare two strings of byte or words. The length of the string
must be stored in the register CX. If both the byte or word strings are equal, zero Flag is set.
- The REP instruction Prefix is used to repeat the operation till CX (counter) becomes zero or the

condition specified by the REP Prefix is False.

18

SCANSB/SW: Scan String Byte or String Word
This instruction scans a string of bytes or words for an operand byte or word specified in the
register AL or AX. The String is pointed to by ES: DI register pair. The length of the string s stored in CX.
The DF controls the mode for scanning of the string. Whenever a match to the specified operand is
found in the string, execution stops and the zero Flag is set. If no match is found, the zero flag is reset.
LODSB/SW: Load String Byte or String Word
The LODS instruction loads the AL / AX register by the content of a string pointed to by DS: SI
register pair. The SI is modified automatically depending upon DF, If it is a byte transfer (LODSB), the SI
is modified by one and if it is a word transfer (LODSW), the SI is modified by two. No other Flags are
affected by this instruction.
STOSB/SW: Store String Byte or String Word
- The STOS instruction Stores the AL / AX register contents to a location in the string pointer by ES: DI
register pair. The DI is modified accordingly; No Flags are affected by this instruction.
- The direction Flag controls the String instruction execution, the source index SI and Destination Index
DI are modified after each iteration automatically.
- If DF=1, then the execution follows auto-decrement mode, SI and DI are decremented automatically
after each iteration.
- If DF=0, then the execution follows auto-increment mode. In this mode, SI and DI are incremented
automatically after each iteration.
Ex:- Clearing a block of memory with a STOSB operation.
MOV AX, 0
MOV DS, AX
MOV ES, AX
MOV DI, A000
MOV CX, OF
CLD
AGAIN: STOSB
LOOPNE AGAIN
NEXT: Clear A000 to AOOF to 00y

19

Addressing Modes of 8086:

The default segment for the addressing modes using BP and SP is SS. For all other addressing
modes, the default segments are DS or ES.
Addressing mode indicates a way of locating data or operands.

Different addressing modes of 8086:

1. Immediate:

In this addressing mode, immediate data is a part of instruction, and appears in the form of
successive byte or bytes.
Ex: - MOV AX, 0050y
Here 0050y is the immediate data and it is moved to register AX. The immediate data may be 8-bit or 16-
bit in size.
2. Direct:

In the direct addressing mode, a 16-bit address (offset) is directly specified in the instruction as a
part of it.
Ex: - MOV AX, [10004]
Here data resides in a memory location in the data segment, whose effective address is
10H x DS +1000H
3. Register:

In register addressing mode, the data is stored in a register and it is referred using the particular
register. All the registers except IP may be used in this mode.

Ex: - MOV AX, BX

4. Register Indirect:

In this addressing mode, the address of the memory location which contains data or operand is
determined in an indirect way using offset registers. The offset address of data is in either BX or SI or DI
register. The default segment register is either DS or ES.

Ex: - MOV AX, [BX]

The data is present in a memory location in DS whose offset is in BX. The effective address is
10H x DS +[BX]|

S. Indexed:

In this addressing mode offset of the operand is stored in one of the index register. DS and ES are

the default segments for index registers SI and DI respectively

Ex: - MOV AX, [S7]

The effective address of the data is 10H x DS + [SI]
20

6. Register Relative: In this addressing mode the data is available at an effective address formed by

adding an 8-bit or 16-bit displacement with the content of any one of the registers BX, BP, SI and DI in
the default either DS or ES segment.

Ex: - MOV AX, 50H[BX]|

The effective address of the data is 10H x DS +50H + [BX]

7. Based Indexed:

In this addressing mode the effective address of the data is formed by adding the content of a base
register (any one of BX or BP) to the content of an index register (any one of SI or DI). The default

segment register may be ES or DS.

Ex:- MOV AX,[BX][S]
The effective address is 10H x DS +[BX |+[S/]

8. Relative Based Indexed:

The effective address is formed by adding an 8-bit or 16-bit displacement with the sum of contents

of any one of the base register (BX or BP) and any one of the index registers in a default segment.

Ex:- MOV AX, 50H[BX|[SI]

Here 50H is an immediate displacement. The effective address is 10H x DS +[BX |+[SI |+ 50H .

9. Intrasegment Direct Mode:

In this mode, the address to which the control is to be transferred lies in the segment in which the
control transfer instruction lies and appears directly in the instruction as an immediate displacement value.
The displacement is computed relative to the content of the instruction pointer IP.

10. Intrasegment Indirect Mode:

This mode is similar to intrasegment direct mode except the displacement to which control is to be
transferred is passed to the instruction indirectly. Here the branch address is found as the content of a
register or a memory location.

11. Intersegment Direct Mode:

In this mode, the address to which the control is to be transferred is in a different segment. This
addressing mode provides a means of branching from one code segment to another code segment. Here,
the CS and IP of the destination address are specified directly in the instruction.

12. Intersegment Indirect Mode:

This mode is similar to intersegment direct mode except the address to which the control is to be
transferred is passed to the instruction indirectly. This information is kept in a memory block of 4 bytes:
IP (LSB), IP(MSB), LS(LSR) and CS(MSB) sequentially. The starting address of the memory block may

be referred using any of the addressing modes, except immediate mode.

21

Assembler Directives and Operators:

The main advantage of machine language programming is that the memory control is directly in
the hands of the programmer, so that, he may be able to manage the memory of the system more
efficiently. On the other hand, the disadvantages are more prominent. The programming, coding and
resource management techniques are tedious. The programmer has to take care of these functions hence
the chances of human errors are more. The programs are difficult to understand unless one has a thorough
technical knowledge of the processor architecture and instruction set.

The assembly language programming is simpler as compared to the machine language
programming. The instruction mnemonics are directly written in the assembly language programs. The
programs are now more readable to users than the machine language programs. The main improvement in
assembly language over machine language is that the address values and the constants can be identified by
labels. If the labels are suggestive, then certainly the program will become more understandable, and each
time the programmer will not have to remember the different constants and the addresses at which they are
stored, throughout the programs. The labels may help to identify the addresses and constants. Due to this
facility, the tedious byte handling and manipulations are got rid of. Similarly, now different logical
segments and routines may be assigned with the labels rather than the different addresses. The memory
control feature of machine language programming is left unchanged by providing storage define facilities
in assembly language programming. The documentation facility which was not possible with machine
language programming is now available in assembly language.

An assembler is a program used to convert an assembly language program into the equivalent
machine code modules which may further be converted to executable codes. The assembler decides the
address of each label and substitutes the values for each of the constants and variables. It then forms the
machine code for the mnemonics and data in the assembly language program. While doing these things,
the assembler may find out syntax errors. The logical errors or other programming errors are not found out
by the assembler. For completing all these tasks, an assembler needs some hints from the programmer, i.e.
the required storage for a particular constant or variable, logical names of the segments, types of the
different routines and modules, end of file, etc. These, types of hints are given to the assembler using
some predefined alphabetical strings called assembler directives. Assembler directives help the assembler
to correctly understand the assembly language programs to prepare the codes.

Another type of hint which helps the assembler to assign a particular constant with a label or
initialize particular memory locations or labels with constants is called an operator. Rather, the operators
perform the arithmetic and logical tasks unlike directives that just direct the assembler to correctly
interpret the program to code it appropriately. The following directives are commonly used in the
assembly language programming practice using Microsoft Macro Assembler (MASM) or Turbo

Assembler (TASM).
22

DIRECTIVES:
DB: Define Byte

The DB directive is used to reserve byte or bytes of memory locations in the available memory.
Example:

LIST DB 01H, 02H, 03H, 04H

This statement directs the assembler to reserve four memory locations for a list named LIST and initialize

them with the above specified four values.

MESSAGE DB 'GOOD MORNING'
This makes the assembler reserve the number of bytes of memory equal to the number of characters in the
string named MESSAGE and initialize those locations by the ASCII equivalent of these characters.
VALUE DB 50H
This statement directs the assembler to reserve SOH memory bytes and leave them uninitialized for the

variable named VALUE.

DW: Define Word.
The DW directive serves the same purposes as the DB directive, but it now makes the assembler
reserve the number of memory words (16-bit) instead of bytes.
Example:
WORDS DW 1234H, 4567H, 78ABH, 045CH
This makes the assembler reserve four words in memory (8 bytes), and initialize the words with the
specified values in the statements.
Another option of the DW directive is explained with the DUP operator.
WDATA DW 5 DUP (6666H)
This statement reserves five words, i.e. 10-bytes of memory for a word label WDATA and initializes all

the word locations with 6666H.

DQ: Define Quad word
This directive is used to direct the assembler to reserve 4 words (8 bytes) of memory for the

specified variable and may initialize it with the specified values.

DT: Define Ten Bytes.
The DT directive directs the assembler to define the specified variable requiring 10-bytes for its
storage and initialize the 10 bytes with the specified values. The directive may be used in case of variables

facing heavy numerical calculations, generally processed by numerical processors.

23

ASSUME: Assume Logical Segment Name
The ASSUME directive is used to inform the assembler, the names of the logical segments to be assumed
for different segments used in the program.
ASSUME CS: CODE, DS: DATA, SS: STACK
END: END of Program

The END directive marks the end of an assembly language program.

ENDS: END of Segment
This directive marks the end of a logical segment. The logical segments are assigned with the names using
the ASSUME directive.

DATA SEGMENT

DATA ENDS
ASSUME CS: CODE, DS: DATA
CODE SEGMENT.

CODE ENDS
END

ENDP: END of Procedure.
In assembly language programming, the subroutines are called procedures. The ENDP directive is

used to indicate the end of a procedure.

Ex: - PROCEDURE STAR

STAR ENDP
EVEN: Align on Even Memory Address

The EVEN directive updates the location counter to the next even address if the current location

counter contents are not even, and assigns the following routine or variable or constant to that address.

24

Ex:- EVEN
PROCEDURE ROOT

ROOT ENDP

EQU: Equate

The directive EQU is used to assign a label with a value or a symbol. The use of this directive is
just to reduce the recurrence of the numerical values or constants in a program code.
Ex: -

LABEL EQU 0500H

ADDITION EQU ADD

EXTRN: External and PUBLIC: Public

The directive EXTRN informs the assembler that the names, procedures and labels declared after
this directive have already been defined in some other assembly language modules. While in the other
module, where the names, procedures and labels actually appear, they must be declared public, using the
PUBLIC directive.

If one wants to call a procedure FACTORIAL appearing in MODULE 1 from MODULE 2; in
MODULEI, it must be declared PUBLIC using the statement PUBLIC FACTORIAL and in module 2, it
must be declared external using the declaration EXTRN FACTORIAL. The statement of declaration
EXTRN must be accompanied by the SEGMENT and ENDS directives of the MODULE 1, before it is
called in MOBULE 2. Thus, the MODULE 1 and MODULE 2 must have the following declarations.

Ex: - MODULEI SEGMENT

PUBLIC FACTORIAL FAR

MODULEI ENDS
MODULE2 SEGMENT

EXTRN FACTORIAL FAR

MODULE2 ENDS

25

GROUP: Group the Related segment
The directive is used to form logical groups of segments with similar purpose or type
directive is used to inform the assembler to form a logical group of the following segment names.

Ex: - PROGRAM GROUP CODE, DATA, STACK

ASSUME CS: PROGRAM, DS: PROGRAM, SS: PROGRAM.
LABEL: Label
The Label directive is used to assign a name to the current content of the location counter.
A LABEL directive may be used to make a FAR jump as shown below.

A FAR jump cannot be made at a normal label with a colon.

LENGTH: Byte Length of a Label
This directive is not available in TASM. This is used to refer to the length of a data array or a string.

Ex:- MOV CX, LENGTH ARRAY

. This

This statement, when assembled, will substitute the length of the array ARRAY in bytes, in the

instruction.

ORG: Origin

The ORG directive directs the assembler to start the memory allotment for the particular segment,

block or code from the declared address in the ORG statement while starting the assembly process

for a

module, the assembler initializes a location counter to keep track of the allotted addresses for the module.

If the ORG statement is not written in the program, the location counter is initialized to 0000.

PROC: Procedure

The PROC directive marks the start of a named procedure in the statement. Also, the types NEAR

or FAR specify the type of the procedure, i.e whether it is to be called by the main program located within

64K of physical memory or not.
Ex: - RESULT PROC NEAR

ROUTINE PROC FAR

SEGMENT: Logical Segment

The SEGMENT directive marks the starting of a logical segment. The started segment is also

assigned a name, i.e. label, by this statement.

26

OPERATORS:
OFFSET: Offset of a Label

When the assembler comes across the OFFSET operator along with a label, it first computes the

16-bit displacement (also called as offset interchangeably) of the particular label, and replaces the string
'OFFSET LABEL' by the computed displacement. This operator is used with arrays, strings, lables and
procedures to decide their offsets in their default segments.
Ex: - DATA SEGMENT
LIST DB 10H
DATA ENDS
CODE SEGMENT
MOV SI, OFFSET LIST
CODE ENDS
PTR: Pointer
The pointer operator is used to declare the type of a label, variable or memory operand. The
operator PTR is prefixed by either BYTE or WORD.
= [f the prefix is BYTE, then the particular label, variable or memory operand is treated as an 8-bit
quantity, while if WORD is the prefix, then it is treated as a 16- bit quantity.
Ex:- MOV AL, BYTE PTR [SI] ; Moves content of memory location addressed by SI (8-bit) to AL
INC BYTE PTR [BX] ; Increments byte contents of memory location addressed by BX
MOV BX, WORD PTR [2000H] ; Moves 16-bit content of memory location 2000H to BX, i.e.
[2000H] to BL [2001 H] to BH
INC WORD PTR [3000H] ; Increments word contents of memory location 3000H
considering contents of 3000H (lower byte) and 3001 H
(higher byte) as a 16-bit number
SEG: Segment of a Label
The SEG operator is used to decide the segment address of the label, variable, or procedure and
substitutes the segment base address in place of ‘SEG label’.
Ex:- MOV AX, SEG ARRAY ; This statement moves the segment address
MOV DS, AX ; of ARRAY in which it is appearing, to register AX and then to DS.

SHORT
The SHORT operator indicates to the assembler that only one byte is required to code the
displacement for a jump (i.e. displacement is within -128 to +127 bytes from the address of the byte next
to the jump opcode).
Ex: - JMP SHORT LABEL
27

&
< s !.“‘ 4 T aQ! :; B
. . f f—hi uz’li vf,:,?;?/lrbf A 4

RY v p s
Py e

ON T -1

ASSembl.sg Laxg%);g%gr %@mmin.\[o\-v‘\% LD%EGR\,
Brhomcwh & cA L IWSE'YL@&H’GY\; B
Lovte o p?ma’a’qm\ -ﬁw e Ei@.ﬁ;"fl ol a Serieg of
B-bit Mwanbey | TRe Seniey Cembtedng 100 Cowrabeny)

S~ ASSUME ©5: QoDE |, bs: DATA
DATA SEGmENT
NOMLIST DR 524 4 23% A
COUNT EQU 100, |
RESOLT Dw ol Dup (?)
DATA ENDS “
CoDE SEGMENT
ORG 200,
Mov AX, D/-‘:’fif'\
MoV ‘DS,' A X
Moy Cx, CoONT
XDR Ax,"AX o
ADR Bx, Bx
MoV ST, DEESET NUMLIST

AG AN - Mov =L, [sT)
ADD Ax, Bx
INc ST
DEC cX

TNZ AGAIN

Moy DI ,oFFSET RESULLT
MoV [DD] AX

Mov LAY, b Cy

| N 219 H
CedE EnDs
D . 28

pad A'F‘ﬁwafow\f\ to. qu?ci ouk Hke -(:OJ'%Q_'S
o 81\/@@ Um ovdexed, cmm:at
tn e Locadkiony ﬁbmﬁﬂ?il

Gt Nuvobeoy Ly,

b~ ASSLUME cst CoDE, DS: DATA

DATA SegMENT

LIST DR 5124, 23 , 964,45, - .-
P @H H, 45,

COUNT EQU ofF

i

LARGEST DR Oty Dpup (1)

DATA ENDS

CoDE S EG™MENT
START MoV

Mov
Mov
Mov
Moy
HAIN < AP
TR L
MoV
ANEXT INC
DEC
IN2
Mov
Mo
Moy
1T
CopE ENDS

D START

AX, DATA

DS, Ax

ST, oRESET LisT
CL, CouNT

AL, (sT)

AL, {51+t]
NEXT

AL, (s34

ST '

[

AGAIN

ST, ORRSET 1LARGEST
ST}, AL

Ak, Ly
21y,

Oﬁ 8- kit AAENINR }{ghgr@{
¥BOD O .kﬁmn, O;dd_r% .

Al S,a:‘%

5('1,)23

Guest

29

g‘::* Wonte am ALP o GO'\S‘LQVZ-Q 0\;{‘/:”7 Serie c:rf_ @
hexa decivaal ?hf (n ARScaonplimg- Oncler

Sof:~ ~ *
SRR S RPNV = PR o BARAIIL e Fvany Sty of-

kcamdwvmcﬁ\ ‘:‘?L‘Qj ™ agccmd(“\;r Y haoe . e e
Bubble Sonting. Techwidu e

Ex- Sy ol woop 53, 25 19 o2

Hemr Lel=x

— A‘!""U\ -1 (i.e 3) (‘{‘c/\,a.“:mj e Wil az_&‘ #‘56(’ Lﬂﬁl{/{" N bea

alb- Hae emd. b'{'— e gemy -
At -2 (te 2) itenokion Lo will st Setond longit nuomben

AH‘J\ i-% (ie 1) tbanahon, ¢ I\ cf"‘l' Hvel lomangt MUk,

.L) 53 2% 19 D2

L.,-j/\)
cHp 25 53 19 o2 T
7 @d&/
53 02 I
a5 19 -
o5 19 02 53 =
U
52 ¢ =
\Ql lul /% oycitz_.
| 9 09 25 53 i
L
oe. 13 25 53] & G’

DATA SEGMENT
L\ST DB 53%, 254, 94, %%w

COUNT €U OLy
DATA ENDS

30

ASSUME cC3. CaDE, DS DATA
CoDE SEGMENT
START . MoV Ax, DATA
Moy DS, AX
XoR Ax, AX
Mov DX, CouNT-|
AGAWN,: Mov X ,Dx
| Moy ST, OFFSET L\ST
AGA 1 Mov Ak, (ST]
cmp AL, (ST+1]
gL PR
Xcue (ST, AL
XCh& ST, AL
PR INe ST
LooP AGAINg

DEc ©BX
TNZ AGAWN,

Moy A, et
\NT 21y
CoDE EMNDS
END START

.‘.h

#:ﬁ Write avy ALP to podoren ol ene baim BcD additiey @
Sol :»
= Lef- 92,
5

EB,
CL\Q_CK e LoDl Nibble. vy txe Al e
e B >9 , tun add g b b

..1—

Vo oy
?\\o

_\.
j;t??

/’v&}—o\ ’Hz‘\a.O:J dﬂtﬂi& A L\.\'?f{:w\ Miblhle. l‘tr,eqlgbmw

(e € 77, o, adkdl & & it Alp dwx?y,fm Peivew
Nivb le .

DATA SEGMENT

OPR| EQU Tp

OoPRL EBUL 5%

ReEs DB 02y DLP (e0)
DATA EMDS
AZSORE Cs: eDE, DS:DATA
CoDE SEGMENT

START = Hov B, ONTA

Mov DS, Rx

m : 32

MSRo

CoDE

=ENDS

L3

MoV
XoR
MOV
ADD
DA R
MoV
I NC
\NC

| T

RL, opPRI
AL, AL
AL, OPR2
AL, BL

RES, AL
MSBg
(Res+1],
Ak, qCk

2\

33

SRR .
:11-, Lsike om ALP tTo ye‘uqok csud- e w Ynb F @
_, L A o
PDLSLEVQ_ NMuwbew avd 'Y]f?_ﬂﬂ.%\ve_ nqmm
oy QG

8.0/0\’) Reniy OF- Sta‘v')e_cL ‘muv\buj

SD" .
Nol- m/g&u}cw?ﬂ(:m?ﬂn«-gxre, Hia MSBOL[‘&L

viuvnbea UL ;,(ve. He mfwmag\m odwuld the Sgn ofi

e, MU bana dwvvw—g/ Hria . veombea /SMLGL% k‘H—M
Sf cf=t, the vmmbo B wcao%va s~
oF cfzo, HRe mumba if postlive_
Exi-Y) 92599,

E.CCFOQ\\ =1o| DI\ ool

DATA SEGMENT

(}ST DWW 25794, OASOOHJOCOOﬁH)O\S"’iHJOB"{DQH

CouNT EQUL OS5y

DATA EMNDS
ASSUME < D&, DS DATA
COD(:—.SEC%M ENT

START: MoV Ax, DATA

Mov DS, AX

XeR Bx, Bx

XOR Dx, DX

XDR Ax, AX

MoV <L, CouNT

Mov ST, ORRSET L\ST

Aapwn Moy AX/ES?’]

SHL AX, ol

Jc NE&
iINne BX
TMP NEXT
NEG (e DX
NERT ADD SI, 0t
DEC CL. |
gz AGAWN
MOV AR, Ly
LT 2w ’
CoDE EMNDS
END START

te, foromn bre_ odpove P?_ca"(&r\nq)

Pbton e Pre e gxeottien | The Awut g k-
Lo ghoved o e Registey Br, & Dx

Bx < Porof PAlive mumbg

Dp & Meof wegsbive vumbly

s /‘s

>
3

-

Z A Ph??fam to jeimci ol e Vuwmbsen of eve, aod oA,
Ny From a guen Boug of gk (”IQELG\OLQCCYV_@("
Numberny .

3- ASSOME - CS: CopE, ps- DATA

DATA segmenT

LIST Dw 2357, CAE 794, 0ez2,, OC71€, 0C000, 0757,
CouNT EQU 006y, .

DATA ErnvDs

CODE SExMEenT

START ; XOR Rx ; Bx

XOR Dx, dx
" Mov Ax, DATA

Mov Dbs, Ax

Moy CL, CounNT
Mo <L, oFRSET L1571

AGA (N - Poev Ax,[sz]
RoR Ax, oy
7C opp
INC Ex
JMP NVNEXT

SOD INC DX

NEXT: APD ST, 02
DEc cL
INZ AGRIN
Hov Ad, QCH
INT 21y

Coe ENDs
END START

36

;’“ ' % ; o5 J U TS :
IS v edy ovy 2 '

W be q Pma::mm to weve o Striveg of doka oy

']Qﬁcm 0{3{23& 2000k to of—fis& 'SOoulf)U, e waﬁ{;b\ eﬁl
e Sk‘b’i\ag }g_ oty

ASSLME oy CoDE, DS DATA

DATA SEEGMme T
SOBRCESTRT £QU ooy
DESTSTRT E6u 2000y
GCooNT EQU ofk

DATA ENDS

CobhEt s CEGMENT

Mov Ax , DATA

Moy D3, Ax

Mov &S, Ax

MoV ST, SouRcESTRT
Moy DT, DEsSTSTRT
Mov cx, CounNT

LD

MoV S faf

MoV AY, Lol

LNT 20y

3
£
0

CoDE enDs

END

37

’ /'"s

®

Z7 Losute a ph%mrw\ to s SN ‘tgtﬁ&m& Whe then
O Given by te (g tihe. Stwing oF vt S T (R o the

Ststng | Prod suk the helokive ooldarey of the byte foom
ta %Emﬁv% Locakion o{i txe. S’FZS-"LYI&‘

Soli~ TR e s%x‘m& B scemmedd SV %Vm..kgl—a- £ ks
~fzm&~n¢ W tre Sl‘x‘m& , The s d‘)-(c% l/sl sd-, CE&(, - 18 Tugel.
Uge of SCASE i shrchion R Quite ObVIeWs hne A Coumkb
Bheuld. e walvtpimed o fad suk Hre nddabive addgg of.
e byte found sulk.

ASSOME cs* CoDE; DS- DATA
CeDE SEGMENT

Mev AX, DATA
Moy DS, AX
May £5, Ax
Mov ex, counT
Moy D"j‘/' OPPEET STRING
Mov RL, soy
Mov AL, BYTE]
ScAN NoP '
| ScAL [‘5‘3‘.3
J7o XX x-
ive BL -
[soP SCANL
XX X" MoV Al G
LT 218
CoDE ENT
DATA SEGH
BYTEl EQU 254k
COLUNT EQu o6l

STRING, DR 121, \3w, LOW, 24, oK, 2\d
DATA BNDS 38
THAEND

7 Digp Vieg TR S“Lkd\% of- Wchfop‘a”oc%%
{/‘z’s Lnthe_sﬁwg.‘ O"O lﬂk& CRT Sczrc'_m Cyﬁ G_
YWiC¥o Q:mp.m - . ‘

Sell- A pwamm o chgP\cw H“i{ S‘t‘s\qa.,

ASSUME es che DS D/—\Tﬁ
DAr'“‘«As CSEGMENT

Tga
o

- MESSAGE DR 0Dy, 0l ,_";"i“-‘sjrum s M\CRS‘PQOCGS&RS

. . 1S INTERESTINGS, oy, OM/\“$
: 2, pmpomwa, St‘nwa_ uﬂ’_ e | mq&%g
DATA €NDS |
CODE SEGMENT

Mov AX, DATA .; .E.@E:.Lﬁmug,r’c DS

Mov DS, Ax |

MoV A, oth Sef Jz‘w‘“&"’ﬂ Val/ue-fif g lay
STV DX, oRpSET, MCSS'FerC

1 NT Z\L\

5 Pewt fe MEssac % qu
MoV AR, e

(} The v L—Q\/z’qp E
T 2th s Rebown fb pog —
CoDE ENDS e

END

39
,5,-’;

' STACK STRUCTURE OF 8086:

The stack is a block of memory that may be used for temporarily storing the contents of the
registers inside the CPU. It is a top-down data structure whose elements are accessed using the stack
pointer (SP) which gets decremented by two as we store a data word into the stack and gets incremented
by two as we retrieve a data word from the stack back to the CPU register.

The process of storing the data in the stack is called ‘pushing into’ the stack and the reverse
process of transferring the data back from the stack to the CPU register is known as ‘popping off’ the
stack. The stack is essentially Last-In-First-Out (LIFO) data segment. This means that the data which is
pushed into the stack last will be on top of stack and will be popped off the stack first. The stack pointer is
a 16-bit register that contains the offset address of the memory location in the stack segment.

The stack segment, like any other segment, may have a memory block of a maximum of 64 Kbytes
locations, and thus may overlap with any other segments. Stack Segment register (SS) contains the base
address of the stack segment in the memory.

The Stack Segment register (SS) and Stack pointer register (SP) together address the stack-top as

explained below:

SS = 5000 H

SP => 2050 H
0101 0000 0000 0000

SS =
.108 PSS = 0101 Q000 0000 0000 0000
+
sSp = 0010 0000 0101 go00
Stack-top 0101 0010 00680 0101 0000
address 5 2 0 5 0
Addresses
SS 5000 H
™~ <— 50000 H
A
Allowed Stack
SP 2050 H Memorv Area
f v
Resisters i <— 52050 H Stack-Top
egl§ ers in Phvsical Address
Architecture _
Memorv Bank

A ' 40

If the stack top points to a memory location 52050H, it means that the location 52050H 1s already
occupied with the previously pushed data. The next 16 bit push operation will decrement the stack pointer
by two, so that it will point to the new stack-top 5204EH and the decremented contents of SP will be
204EH. This location will now be occupied by the recently pushed data.

Thus for a selected value of SS, the maximum value of SP=FFFFH and the segment can have
maximum of 64K locations. If the SP starts with an initial value of FFEFFH, it will be decremented by two,
whenever a 16-bit data is pushed onto the stack. After successive push operations, when the stack pointer

contains 0000H, any attempt to further push the data to the stack will result in stack overflow.

SO000 H ‘
_ (-] lnstruction SF after
gs | 5600 H e ey [PUBHAX) Exgtuion of
sount k| WHAL esch atuclion
BPLFFFEH| S50002H| 29HAH PUSHAX | DO0Y H
1 — ! i
| Ax [20251 | |
[I
| H
. | |
25 HAL ! FFFB H
965 H AM FLISH AX
SEHAL 1 FFFD H
29 HAH PUSH A
i |
mslmc:lcns: Eesuh : P af‘:&r]
[i:H SReCulgn
__ sobocH | ROSET L cton
{ |
56 {s000H !
(o | -
se [sEba— | 1 |
Ax [2567 H] 3 ! !
! | n
[! !
| ' l.
b 1 j
¢ ‘ !
' ! I ECET
: | |
[N
o | |
G34FEH 5TH l |
— | t
g 53500 H }) |$

After a procedure is called using the CALL instruction, the IP is incremented to the next
instruction. Then the contents of IP, CS and flag register are pushed automatically to the stack. The
control is then transferred to the specified address in the CALL instruction i.e. starting address of the
procedure. Then the procedure is executed.,

Programming for Stack:

Program 1: Write an assembly language program to caiculate squares of BCD numbers 0 to 9 and
store them from 2000h offset onwards in the current data segment. The numbers and their squares

are in the BCD format. Write a subroutine for the calculation of the square of a number.

Ans:

ASSUME CS: CODE, DS: DATA, 8S: STACK

DATA SEGMENT
ORG 2000H
SQUARES DB 0FH DUP (?)
DATA ENDS
STACK SEGMENT
SDATA DB 100H DUP (?)
STACK ENDS
CODE SEGMENT
START: MOV AX,DATA
MOV DS,AX
MOV AX,STACK
MOV SS,AX '
MOV SP,OFFSET SDATA
MOV CL,0AH
MOV SLOFFSET SQUARES
MOV AL,00H
NEXTNUM: CALL SQUARE
MOV BYTE PTR [SI],AH
INC AL
INC SI
DEC CL
JNZ NEXTNUM
MOV AH4CH
INT 21H

; Res;:rve 256 bytes for stack

;Initialize data segment
;Initialize stack segment

; Initialize stack pointer

; Initialize counter for numbers
; Pointer for array of squares

; Start from zero

; Calculate square procedure

- ; Store square in the array

; Go to next number
; Increment array pointer
; Decrement counter

; Stop if CL=0, else continue

42

SQUARE PROC NEAR
MOV BH,AL
MOV CH,AL
XOR AL AL

AGAIN: ADD AL,BH

DAA
DEC CH
JNZ AGAIN
MOV AH,AL
MOV AL,BH
RET

SQUARE ENDP

CODE ENDS

END START

Program 2: Write an ALP to change a sequenc

; Square is a near procedure

: Successively add BH to AL
: Get BCD equivalent

: Decrement multiplier register

: Store the square of the number

: Get back the number

<1 - o 147
NNV

AL 9971’%
y w2, Sz 0
AL.D
__,DAL', O’:*LD) -—-:‘ALA’U_
aL-©
o BU> 1, 07
SR
pu o= > #
W !
P;L"-\ 0
CM,,?/(X
W) B L
ey A

e of sixteen 2-byte numbers from ascending fo

descending order. The numbers are stored in the data segment. Store the new series at addresses
starting from 6000H. Use LIFO property of stack.

ASSUME CS: CODE, DS: DATA

DATA SEGMENT
LIST DW 10H
ORG 6000H
RESULT DW 10H
COUNT EQU 10H

STACKDATA DB 100H DUP (?)

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA
MOV DS, AX
MOV S§,AX
MOV SP,OFFSET LIST
MOV CL,COUNT

:Initialize data segment

MOV BX, OFFSET RESULT+COUNT

NEXT: POP AX

'w)

@r=>) ca 1;f){

AL 5 bv 3
Bl '0‘:1;(’ —aA;;;
(S - ’
iu-?)f} =97

pa =9
pt=
43

MOV DX, SP
MOV §P,BX
PUSH AX
MOV BX,SP
MOV SP,DX
DECCL
INZ NEXT
MOV AH,4CH
INT 21H
CODE ENDS

END START

PROCEDURES: -

A procedure is a set of code that can be branched to and returned from in such a way that the code
is as if it were inserted at the point from which it is branched to. The branch to procedure is referred to as
the call, and the corresponding branch back is known as the refurn. The return is always made to the

instruction immediately following the call regardless of where the call is located.

Calls, Returns, and Procedure Definitions

The CALL instruction not only branches to the indicated address, but also pushes the return
address onto the stack. The RET instruction simply pops the return address from the stack. The registers
used by the procedure need to be stored before their contents are changed, and then restored just before
their contents are changed, and then restored just before the procedure is excited.

A CALL may be direct or indirect and, intra-segment or intersegment. If the CALL is intersegment,
the return must be intersegment. Intersegment call must push both (IP) and (CS) onto the stack. The return
must correspondingly pép two words from the stack. In the case of intra-segment call, only the contents of

1P will be saved and retrieved when call and return instructions are used.

Procedures are used in the source code by placing a statement of the form at the Beginning of the

procedure
Procedure name PROC Attribute (i.e NEAR or FAR)

and by terminating the procedure with a statement
Procedure name ENDP

44

The attribute that can be used will be either NEAR or FAR. If the attribute is NEAR, the RET instruction
will only pop a word into the IP register, but if it is FAR, it will also pop a word into the CS register.
A procedure may be in:
1. The same code segment as the statement that calls it.
2. A code segment that is different from the one containing the statement that calls it, but in the same
source module as the calling statement.

3. A different source module and segment from the calling statement.

In the first case, the attribute could be NEAR provided that all calls are in the same code segment
as the procedure. For the latter two cases the attribute must be FAR. If the procedure is given a FAR
attribute, then all calls to it must be intersegment calls even if the call is from the same code segment. For

the third case, the procedure name must be declared in EXTRN and PUBLIC statements.

Saving and Restoring Registers
When both the calling program and procedure share the same set of registers, it is necessary (o

save the registers when entering a procedure, and restore them before returning to the calling program.

MSK PROCNEAR
PUSH AX
PUSH BX
PUSH CX
POP CX
POP BX
POP AX
RET

MSK ENDP

Procedure Communication

There are two general types of procedures; those operate on the same set of data and those that
may process a different set of data cach time they are called. If a procedure is in the same source module
as the calling program, then the procedure can refer to the variables directly. When the procedure is in a
separate source module it can still refer to the source module directly provided that the calling program
contains the directive
PUBLIC ARY, COUNT, SUM

EXTRN ARY: WORD, COUNT: WORD, SUM: WORD

h 45

' Program 3: Write an ALP to convert Binary number into its Decimal and then ASCII equivalent,
and then display the number.
ASSUME CS: CODE, §8: STACK
STACK SEGMENT
STAKDATA DB 100H
STACK ENDS

CODE SEGMENT
START: MOV AL,59H
CALL BTA
MOV AH,4CH
INT 21H

BTA PROC NEAR
PUSH DX
PUSH BX
PUSH AX
MOV AH,00H ; Clear AH
Bt TDHAA ; Convert to BCD
ADD AX,3030H ; Convert to ASCII
MOV BX,AX ; Save Result
MOV DL,BH ; Load first Digit (MSD)
MOV AH,02H ; Load function Number
INT 21H ; Display first Digit
MOV DL.BL ; Load second Digit
INT 21H ; Display second Digit
POP AX
POP BX
POP DX
RET

BTA ENDP

CODE ENDS
END START

/3 46

INTERRUPTS AND INTERRUPT SERVICE ROUTINES:

Interrupt and its Need

The microprocessors allow normal program execution to be interrupted in order to carry out a
specific task/work. The processor can be interrupted in the following ways
i) by an external signal generated by a peripheral,
ii) by an internal signal generated by a special instruction in the program,

iii) by an internal signal generated due to an exceptional condition which occurs while executing an
instruction. (For example, in 8086 processors, divide by zero is an exceptional condition which
initiates type O interrupt and such an interrupt is also called execution).

In general, the process of interrupting the normal program execution to carry out a specific
task/work is referred to as interrupt.

The interrupt is initiated by a signal gencrated by an external device or by a signal generated
internal to the processor. When a microprocessor receives, an interrupt signal it stops executing current
normal program, save the status (or content) of various registers (IP, CS and flag registers in case of 8086)
in stack and then the processor executes a subroutine/procedure in order to perform the specific task/work
requested by the interrupt. The subroutine/procedure that is executed in response to an interrupt is also
called Interrupt Service Subroutine. (ISR). At the end of ISR, the stored status of registers in stack is
restored to respective registers, and the processor resumes the normal program execution from the point
{instruction) where it was interrupted.

The external interrupts are used to implement interrupt driven data transfer scheme. The interrupts
generated by special instructions are called software interrupts and they are used to implement system
services/calls (or monitor servicesfcalls). The system/monitor services are procedures developed by
system designer for various operations and stored in memory. The user can call these services through
software interrupts. The interrupts generated by exceptional conditions are used to implement crror

conditions in the system.

Interrupt Driven Data Transfer Scheme

The interrupts are useful for efficient data transfer between processor and peripheral. When a
peripheral is ready for data transfer, it interrupts the processor by sending an appropriate signal. Upon
receiving an interrupt signal, the processor suspends the current program execution, save the status in
stack and executes an ISR to perform the data transfer between the peripheral and processor. At the end of
JSR the processor status is restored from stack and processor resume its normal program execution. This
type of data transfer scheme is called interrupt driven data transfer scheme.)

The data transfer between the processor and peripheral devices can be implemented either by

polling technique or by interrupt method. In polling technique, the processor has to periodically pell or

A | 47

" check the status/readiness of the device and can perform data transfer only when the device 'is ready. In
polling technique, the processor time is wasted, because the processor has to suspend its work and check
the status of the device in predefined intervals,

Alternatively, if the device interrupts the processor to initiate a data transfer whenever it is ready
then the processor time is effectively utilized because the processor need not suspend its work and check
the status of the device in predefined intervals. For an example, consider the data transfer from a keyboard
to the processor.

Normally a keyboard has to be checked by the processor once in every 10 milli seconds for a key
press. Therefore, once in every 10 milli seconds the processor has to suspend its work and then check the
keyboard for a valid key code. Alternatively, the keyboard can interrupt the processor, whenever a key is
pressed and a valid key code is generated. In this way, the processor need not waste it’s time to check the
keyboard once in every 10 milli seconds.

Classification of Interrupts
In general, the interrupts can be classified in the following three ways:

1. Hardware and software interrupts

2. Vectored and Non-Vectored interrupt

3. Maskable and Non-Maskable interrupts

The interrupts initiated by external hardware by sending an appropriate signal to the interrupt pin
of the processor is called hardware interrupt. The 8086 processor has two interrupt pins INTR and NMI.

The interrupts initiated by applying appropriate signal to these pins are called hardware interrupts of 8086.

The software interrupts are program instructions. These instructions are inserted at desired
locations in a program. While running a prog;‘am, if software interrupt instruction is encountered then the
processor initiates an interrupt. The 8086 processor has 256 types of software interrupts. The software
interrupt instruction is INT n, where n is the type number in the range 0 to 255.

When an interrupt signal is accepted by the processor, if the program control automatically
branches to a specific address (called vector address) then the interrupt is called vectored interrupt.‘ The
automatic branching to vector address is predefined by the manufacturer of processors. (In these vector
addresses the interrupt service subroutines (ISR) are stored). In non-vectored internipts the interrupting
device should supply the address of the ISR to be executed in response to the interrupt. All the 8086
interrupts are vectored interrupts. The vector address for an 8086 interrupt is obtained from a vector table
implemented in the first 1kb memory space (00000h to 03FFFh). _

The processor has the facility for accepting or rejecting hardware interrupts. Programming the

processor to reject an inferrupt is referred to as masking or disabling and programming the processor to

A 48

accept an interrupt is referred to as unmasking or enabling. In 8086 the interrupt flag (IF) can be set to one -
to unmask or enable all hardware interrupts and IF is cleared to zero to mask or disable a hardware
interrupts except NML.

The interrupts whose request can be either accepted or rejected by the processor are called
maskable interrupts. The interrupts whose request has to be definitely accepted (or cannot be rejected) by
the processor are called non-maskable interrupts. Whenever a request is made by non-maskable interrupt,
the processor has to definitely accept that request and service that interrupt by suspending its current
program and executing an ISR. In 8086 processors, all the hardware interrupts initiated through INTR pin
are maskable by clearing interrupt flag (IF). The interrupt initiated through NMI pin and all software

interrupts are non-maskable.

Sources of Interrupts in 8086

An interrupt in 8086 can come from one of the following three sources.

1. One source is from an external signal applied to NMI or INTR input pin of the processor. The interrupts
initiated by applying appropriate signals to these input pins are called hardware interrupts.

2. A second source of an interrupt is execution of the interrupt instruction "INT n", where n is the type
number. The interrupts initiated by "INT n" instructions are called software interrupts.

3. The third source of an interrupt is from some condition produced in the 8086 by the execution of an
instruction. An example of this type of interrupt is divide by zero interrupt. Program execution will be
automatically interrupted if you attempt to divide an operand by zero. Such conditional interrupts are

also, known as exceptions

Interrupts Cycle of 8086:
The 8086 microprocessor has 256 types of interrupts. INTEL has assigned a type number to each

interrupt. The type numbers are in the range of 0 to 235. The 8086 processor has dual facility of initiating
these 256 interrupts. The interrupts can be initiated either by executing "INT n" instruction where n is the
type number or the interrupt can be initiated by sending an appropriate signal to INTR input pin of the
processor.

For the interrupts initiated by software instruction” INT n *, the type number is specified by the
instruction itself. When the interrupt is initiated through INTR pin, then the processor runs an interrupt
acknowledge cycle to get the type number. (i.e., the interrupting device should supply the type number
through DO- D7 lines when the processor requests for the same through interrupt acknowledge cycle).

The kinds of interrupts and their designated types are summarized in figure by illustrating the
layout of their pointers within the memory. Only the first five types have explicit definitions; the other
types may be used by interrupt instructions or external interrupts. From the figure, it is seen that the type

associated with a division error interrupt is 0.

: 49

Therefore, if a division by 0 is attempted, the processor will push the current contents of the PSW,
CS and IP into the stack, fill the IP and CS registers from the addresses 000600 to 00003, and continue
executing at the address indicated by the new contents of IP and CS.

A division error interrupt occurs any time a DIV or IDIV instruction is executed with the quotient
exceeding the range, regardless of the IF (Interrupt flag) and TF (Trap flag) status.

The type I interrupt is the singie-step interrupt (Trap interrupt) and is the only interrupt controlled
by the TF flag. If the TF flag is enabled, then an interrupt will occur at the end of the next instruction that
will cause a branch to the location indicated by the contents of 00004H to 00007H.The single step
interrupt is used primarily for debugging which gives the programmer a snapshot of his program after
each instruction is executed. .

The type 2 interrupt is the non-maskable external interrupt. It is the only external interrupt that can
occur regardless of the IF flag setting. It is caused by a signal sent to the CPU through the non-maskable
interrupt pin.

The remaining interrupt types correspond to interrupts instructions imbedded in the interrupt

program or to external interrupts. The interrupt instructions are summarized below and their interrupts are

not controlled by the IF flag.

kltﬁ‘m&l ‘ i
TYFEN sssp |]
¥ | — | MANPSW
SNSRIy ' : ——
- -SSP T MAIN Gs

psw | | Mamos| (Mainip] [SSEER4) P
' I

Blalus while axeculing MaN 1SR CSISR IR 18R

Pregramimes o e

D0U0:03FEH o d e

QUOCAN+Z) ~= fspos - | vedor

~— O000N} < jarip tabls
G000:0000

hé&mcry Bank

Interrupt Response Sequence

50

Interrupt
Type No.

Pointer
for

type O

Pointer
for
Lype 1

Pointer
for

type 2

Pointer
for
type 3

Pointer
for
type 4

Pointer
for
type N

Pointer
for
type 255

{
{
{
{
{
{
{

Conlents

New (1P) for type 0

New (CS) fortype O

New (IP} fortype |

New (CS) for type 1

New (IP) for type 2

New (CS) for type 2

New (IP) for type 3

New (CS) for type 3

New (1P) for type 4

New (CS) for type 4

New (IP) for type N

New (CS) fortype N

New (1P} for type 255

New (CS) for type 235

Address

00000 Reserved for divide error

00004 Reserved for single step
trap-TF must be sel

00008 Reserved for nonmaskable
inlerrupt

Reserved [or one-hyte

W0C
{ interrupt istrucion INT

Reserved {or overtlow,

Q0010 . .
INTO instrovtion

00014\

4HN Reserved for
two-byte INT

istructions
> and maskable

exlernal
intereapls

45N+ 4

03FC

J

(0400

Structure of Interrupt vector table of 8086

51

i
S

Interrupt Programming:

ASSUME CS : CODE, 05 : DATA

DATA SEGF&T
;
i
ﬁﬂﬁ'ﬁ ENDE
i
1
i
e INT 08H
Aflar executing R YW p——
F e - AT SRBCUEY
INT 084 ; | ISRDSH
: (
= |SR0SH FROG
; ISROSH-ntemmugt servios routing
: : fmr“ﬁ‘PE 08K
ISR05: EHDP
CODE ENDS
END
18R QAH (5R GBH
* {1 gat; Bgain) " |
a Vs F
IHT OEH - i
l L g
z ey .
, [ey i
15K OAH ands ISE OB ands

Transfer of Control for Nested Interrupts

Program:
Write an ALP to a create a file RESULT and store in it SO0H bytes from the memory block starting
at 1000:1000, if either an interrupt occurs at INTR pin with Type 0AH or an instruction equivalent

to the above interrupt is executed.

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

FILENAME DB “RESULT”, “$”
MESSAGE DB “FILE WASN’T CREATED‘SUCCESSFULLY”, 0AH, ODH."}”

DATA ENDS

CODE SEGMENT
START: MOV AX, CODE
MOV DS, AX : Set DS at code for setting IVT
MOV DX,OFFSET ISR0A ; Set DX at offset of ISROA.
MOV AX,250AH -Set IVT using function value 250AH
INT 21H ; in AX under INT 21H
MOV DX,0FFSET FILENAME ; Set pointer to filename.
MOV AX,DATA - Set the DS at DATA for filename.
MOV DS,AX
MOV CX,00H .
MOV AH,3CH : Create file with the filename ‘RESULT
INT 21H
JNC FURTHER - If no carry, create operation is successful
MOV DX, OFFSET MESSAGE ; else display message
MOV AH,09H
INT 21H
JMP STOP
FURTHER: INT 0AH - If the file is created successfully,
STOP: MOV AH,4CH - write into it and return to DOS prompt
INT 21H :
ISROA PROC NEAR
MOV BX,AX : Take file handle in BX,
MOV CX,500H ; Byte count in CX

MOV DX,1000H : Offset of block in DX
MOV AX,1000H ; Segment value of block

MOV DS,AX ;in DS
MOV AH,40H *: Write in the file and return
INT21H
ISRCA ENDP
CODE ENDS
END START

53

gggt;aaI:'ALP that gives display ‘IRT2 is OK” if a hardware Signal appears on IRQz pin and ‘IRT3
is OK” if it appears on YRQs pin of PC IO channel.
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
MSGI1 DB “IRT2 is OK”, 0AH, 0DH,”$”
MSG2 DB “IRT3 is OK”, 0AH, 0DH,”$”
DATA ENDS
CODE SEGMENT

START: MOV AX,CODE

MOV DS,AX ; Set IVT for Type 0AH

MOV DX, OFFSET ISR1 :
MOV AX,250AH ; IRQzis equivalent to Type OAH
INT 21H

MOV DX, OFFSET ISR2 ; Set IVT for Type O0BH

MOV AX,250BH ; IRQ3 is equivalent to Type O0BH
INT 21H

HERE: JMP HERE
ISR1 display the message

ISR1 PROC LOCAL
MOV AX,DATA
MOV DS,AX
MOV DX,0FFSET MSG1 ; Display message MSG1
MOV AH,09H
INT 21H
IRET
ISR1 ENDP
ISR2 display the message
ISR2 PROC LOCAL
MOV AX,DATA
MOV DS,AX
MOV AX,OFFSET MSG2 ; Display message MSG2
MOV AH,09H
INT 21H
IRET
[SR2 ENDP
CODE ENDS
| END START

o4

Assembly Language Program Development Tools:

1. Editor

An editor is a program which allows you to create a file containing the assembly
language statements for your program.

Example: PC-Write, Wordstar.
As you type in your program, the editor stores the ASCII codes for the letters and
numbers in successive RAM locations.
When you have typed in your entire program, you then save the file on the hard disk.

This file is called source file and the extension is .asm.

2. Assembler

An assembler program is used to translate the assembly language mnemonics for
instructions to corresponding binary codes. When you run the assembler, it reads the
source file of your program from the disk where you have saved it after editing.

On the first pass through the source program, the assembler determines the displacement
of named data items, the offset of labels, etc. and puts this information in a symbol table.
On the second pass through the source program, the assembler produces the binary code
for each instruction and inserts the offsets, etc. that it calculated during the first pass.

The assembler generates 2 files on the floppy disk or hard disk. The first file is called
object file (.obj).

The second file generated by assembler is called the assembler list file and is given

extension (.Ist).

3. Linker

A linker is a program used to join several object files into one large object file.
The linker produces a link file which contains the binary codes for all the combined
modules.

The linker also produces a link map file which contains the address information about the

linked files (.exe).

4. Locator

A locator is a program used to assign the specific address of where the segments of object
code are to be loaded into memory.
A locator program called EXE2BIN comes with the IBM PC Disk Operating System
(DOS). EXE2BIN converts a .exe file to a .bin file which has physical addresses.

- ' 55

5. Debugger

A debugger is a program which allows you to load your object code program into system
memory, execute the program and troubleshoot or debug it.

The debugger allows you to look at the contents of registers and memory locations after
your program runs.

It allows you to change the contents of registers and memory locations and re-run the
program.

Some debuggers allow you to stop execution after each instruction so that you can check
or alter after each register contents.

A debugger also allows you to set a breakpoint at any point in your program. If you insert
a breakpoint at any point in your program, the debugger will run the program up to the

instruction where you put the breakpoint and then stop the execution.

6. Emulator

An emulator is a mixture of hardware and software.
It is used to test and debug the hardware and software of an external system, such as the
prototype of a microprocessor based instrument. Part of the hardware of an emulator is a

multi wire cable which connects the host system to the system being developed.

56

8251 — USART

(Universal Synchronous Asynchronous Receiver & Transmitter)

8251 is a USART (Universal Synchronous and Asynchronous Receiver and Transmitter)
compatible with Intel’s processors. This chip converts the parallel data into a serial stream of bits
suitable for serial transmission. It is also able to receive a serial stream of bits and convert it into
parallel data bytes to be read by a microprocessor.

Basic Modes of data transmission

a) Simplex

b) Half Duplex

¢) Duplex
a) Simplex mode

Data is transmitted only in one direction over a single communication channel. For example,
the processor may transmit data for a CRT display unit in this mode.

Ex:- radio station, earthquake sensor

b) Half Duplex mode

In this mode, data transmission may take place in either direction, but at a time data may be
transmitted only in one direction. A computer may communicate with a terminal in this mode. It is

not possible to transmit data from the computer to the terminal and terminal to computer

simultaneously.
Ex:- walky-talky, push to talk (PTT) devices
¢) Duplex Mode

In duplex mode, data may be transferred between two transreceivers in both directions

simultaneously.

Ex:- phone conversation.

Signal Description of 8251:

D; 1 28] Dy

Ds [2 27 [] Do
RXD[| 3 26] Ve
GND [] 4 25 [] RXC

D.[]5 24] DTR

Ds [6 23 [] RTS

Dg (|7 22 [] DSR

D[]8 8251A 21 |] RESET
xc []9 20 [] CLK

wr [10 19] TXD

gs [n 18 [] TXEMPTY
c [12 17 [] CTS

RD [| 13 16 [] SYNDET/BD

RXRDY [| 14 15 [] TXRDY

D0 — D7: This is an 8-bit data bus used to read or write status, command word or data from or to the
8251A.

C / D: (Control Word/Data): This input pin, together with RD and WR inputs, informs the 8251A
that the word on the data bus is either a data or control word/status information. If this pin is 1,
control / status is on the bus, otherwise data is on the bus.

RD: This active-low input to 8251A is used to inform it that the CPU is reading either data or status
information from its internal registers. This active-low input to 8251A is used to inform it that the
CPU is writing data or control word to 8251A.

WR: This is an active-low chip select input of 8251A. If it is high, no read or write operation can be
carried out on 8251. The data bus is tri-stated if this pin is high.

CLK: This input is used to generate internal device timings and is normally connected to clock
generator output. This input frequency should be at least 30 times greater than the receiver or
transmitter data bit transfer rate.

RESET: A high on this input forces the 8251A into an idle state. The device will remain idle till this
input signal again goes low and a new set of control word is written into it. The minimum required
reset pulse width is 6 clock states, for the proper reset operation.

TXC (Transmitter Clock Input): This transmitter clock input controls the rate at which the character is
to be transmitted. The serial data is shifted out on the successive negative edge of the TXC.

TXD (Transmitted Data Output): This output pin carries serial stream of the transmitted data bits
along with other information like start bit, stop bits and parity bit, etc.

RXC (Receiver Clock Input): This receiver clock input pin controls the rate at which the character is
to be received.

RXD (Receive Data Input): This input pin of 8251A receives a composite stream of the data to be
received by 8251 A.

RXRDY (Receiver Ready Output): This output indicates that the 8251A contains a character to be
read by the CPU.

TXRDY - Transmitter Ready: This output signal indicates to the CPU that the internal circuit of the
transmitter is ready to accept a new character for transmission from the CPU.

DSR - Data Set Ready: This is normally used to check if data set is ready when communicating with
a modem.

DTR - Data Terminal Ready: This is used to indicate that the device is ready to accept data when
the 8251 is communicating with a modem.

RTS - Request to Send Data: This signal is used to communicate with a modem.

TXE- Transmitter Empty: The TXE signal can be used to indicate the end of a transmission mode.

Internal Architecture of 8251A:

Data Bus A N Transmit
D7 - Do <::l|> Buffer 1 e > 33”?;; 1XD
Fy]
RESET 1 I :
—

CLE——= . Transmit R
C/D—=i Read/\Write . ——= TXE
RD —=q Control . - - TXG
WR —= Logic =

e |
™
I E

DSR —=q £ = ;

DTR~=—v Modem ai < H;t:{;eve _ e

CTS—=g cControl | 1] iy I‘f,r

RTS = —] (S-P)

[
¥
. ——= RXRDY
o Recieve BYC
Control |, _ SyNDET/BD
]

The data buffer interfaces the internal bus of the circuit with the system bus. The read / write
control logic controls the operation of the peripheral depending upon the operations initiated by the
CPU. C / decides whether the address on internal data bus is control address / data address. The
modem control unit handles the modem handshake signals to coordinate the communication between
modem and USART. The transmit control unit transmits the data byte received by the data buffer
from the CPU for serial communication. The transmission rate is controlled by the input frequency.
Transmit control unit also derives two transmitter status signals namely TXRDY and TXEMPTY
which may be used by the CPU for handshaking. The transmit buffer is a parallel to serial converter

that receives a parallel byte for conversion into a serial signal for further transmission.

The receive control unit decides the receiver frequency as controlled by the RXC input
frequency. The receive control unit generates a receiver ready (RXRDY)) signal that may be used by
the CPU for handshaking. This unit also detects a break in the data string while the 8251 is in
asynchronous mode. In synchronous mode, the 8251 detects SYNC characters using SYNDET/BD

pin.

Operating Modes of 8251:

1. Asynchronous mode

2. Synchronous mode

Asynchronous Mode (Transmission)

When a data character is sent to 8251A by the CPU, it adds start bits prior to the serial data
bits, followed by optional parity bit and stop bits using the asynchronous mode instruction control

word format. This sequence is then transmitted using TXD output pin on the falling edge of TXC.

Asynchronous Mode (Receive)

A falling edge on RXD input line marks a start bit. The receiver requires only one stop bit to
mark end of the data bit string, regardless of the stop bit programmed at the transmitting end. The 8-
bit character is then loaded into the into parallel I/O bufter of 8251. RXRDY pin is raised high to
indicate to the CPU that a character is ready for it. If the previous character has not been read by the

CPU, the new character replaces it, and the overrun flag is set indicating that the previous character is

lost.

Mode instruction format for Asynchronous mode

Dy Dg Ds Dy Ds D2 Dy Do
S2 54 EP | PEN Lz L4 B; B4
Baud Rate Select
1-Pag:y
-]
:n_;is_ Character Length
Stopbit able Selection
Selection ¥] ¥ Y b
Invalid 1] 0 0 0 5 Bits 0 Synch. Mode
1 bit 0 1 1 ;.:.r 0 1 6 Bits 0 1 1 X Asynch
-Even
el 1 | o parity 1|1 o | 78is 1 | o | 18XAsynch
: pamﬁ 1| 1 | ssis 1 | 1 | s4xAsynch
2 bits 1 1

Asynchronous Mode Transmit and Receive Formats

ALWAYS LOW

PARITY

ALWAYS HIGH

L

STOP STOP

ONE CHARACTER

Sender

Transmitter Output

TXD Marking

Transmission gaps

N,

L,

Receiver Input

RXD

Transmission Format

Receive Format

Data Data Receiver
(a) Asynchronous transmission
Generated by 8251
Do~ D1 Dy /
¢ { |
—— [
Start Parity Stop
Bit _} . Bit Bit
LS
i. X Programmed._._
by character length
Does not appear
Dy Dx on data bus
o}
{
S I P (—
Start Parity | Stop
R
| cPu Byte (5-8 bits/char.)
Assembled Data O/P TXD
i CE ‘L (¢
y T b
Start ' Parity Stop
Bit Data Character it Bit
3]]}
LYY SR
Serial Data Input
(g { L
1] 1
Start Parity Stop
Bit Data Character Bit Bit
)} !¢
(S (Y
CPU Byte (5-8 bits)

))
LA

Synchronous Mode (Transmission)

The TXD output is high until the CPU sends a character to 8251 which usually is a SYNC
character. When CTS line goes low, the first character is serially transmitted out. Characters are
shifted out on the falling edge of TXC. Data is shifted out at the same rate as TXC, over TXD output
line. If the CPU buffer becomes empty, the SYNC character or characters are inserted in the data
stream over TXD output.

Synchronous Mode (Receiver)

In this mode, the character synchronization can be achieved internally or externally. The data
on RXD pin is sampled on rising edge of the RXC. The content of the receiver buffer is compared
with the first SYNC character at every edge until it matches. If 8251 is programmed for two SYNC
characters, the subsequent received character is also checked. When the characters match, the hunting
stops.

The SYNDET pin set high and is reset automatically by a status read operation. In the
external SYNC mode, the synchronization is achieved by applying a high level on the SYNDET
input pin that forces 8251 out of HUNT mode. The high level can be removed after one RXC cycle.

The parity and overrun error both are checked in the same way as in asynchronous mode.

Synchronous Mode Instruction Format

scs |eso | Ep |PEN| L2 | Lo | O | O

‘ | Character Length”
ol o 5 Bits
! 0 1 6 Bits
Single Char. Sync 1 0 7 Bits
1-Single SYNC Char. 4 1 8 Bits
0-Double SYNC Char.

1-Parity enable
0-Disable

e e <

- arity generate and check
Extemal Sync. Detect _ - 1 E;;Zn P : t;y g
1-SYNDET is Input -~ 0- pa
0-SYNDET is Output

Synchronous mode Transmit and Receive data format

Sender Data | Data | Data | Data | Data Receiver

(b) Synchronous transmission

DATA CHARACTERS (5-8 BITS)

ASSEMBLED SERIAL DATA OUPUT (TXD)

l

SYNC SYNC _
CHAR 1| CHAR?2 DATA CHARACTERS (5-8 BITS)

RECEIVE FORMAT
SERIAL DATA INPUT (RXD)

S| B DATA CHARACTERS (5-8 BITS)

RECEIVED BYTE

|

DATA CHARACTERS (5-8 BITS)

Command Instruction Definition
The command instruction controls the actual operations of the selected format like enable
transmit/receive, error reset and modem control. A reset operation returns 8251 back to mode

instruction format.

Command Instruction format

D;

D4

EN

RTS

ER [SBRK| RXE

DTR

TXEN

If = 1, HUNT

For SYNC Character

Forces

Format

Internal Reset *‘High™

8251A 10 mode nst.

=1 _
Forces RTS =0

Request to Send

L

Reset Emror Flags
PE,OE,FEIfER =1

1- Transmit Enable
0- Disable

Data Terminal Ready

f=1,DTR=0

Receive Enable

Status Read Definition

1- Enable
0- Disable

Send Brake Character
1- TXD forced 0"

0- Normal Operation

This definition is used by the CPU to read the status of the active 8251 to confirm if any error

condition or other conditions like the requirement of processor service has been detected during the

operation.
D7 Dg Ds Da Ds D; D4 Do
DSR SYNDET FE* OE* PE* TXEMPTY| RXRODY TXRDY
T T \
L
e || [| i
indicates is se t
Ithalt DSR stop bit is not detected as pins
is at zero at the end of every ‘
level. characie;r and rese:jt by y
ER bit of comman i Error
insiuchon. il i This bit indicates, USART
if error detected. is ready to accept a data
Reset by ER bit %t;arahc\er ocr! ?fommtarr;%a
; . . .
i is set when of command his has a different.
th;sglF?Lgl goes not read instruction ning than TXROY pin.
a character before the |«——

next one becomes
available and is reset by
command instruction.
The overrun character
is lost.

|

* Any of the Flag setting does not inhibit the 8251A operation

Interfacing 8251 with 8086:

Design the hardware interface circuit for interfacing 8251 with 8086. Set the 8251 in asynchronous
mode as a transmitter and receiver with even parity enabled, 2 stop bits, 8-bit character length,
frequency 160 kHz and baud rate 10 K.

(a) Write an ALP to transmit 100 bytes of data string starting at location 2000:5000H.

(b) Write an ALP to receive 100 bytes of data string and store it at 3000:4000H.

Solution:

Asynchronous mode control word for transmitting 100 bytes of data:

D7 D6 D5 D4 D3 D2 D1 DO
1 1 1 1 1 1 1 0 =FEH
2 Stop bits Even Parity 8-bit CLK scaled
Enabled format
a) ALP to initialize 8251 and transmit 100 bytes of data

ASSUME CS: CODE

CODE SEGMENT
START: MOV AX, 2000H
MOV DS, AX ; DS points to byte string segment
MOV SI, 5000H ; SI points to byte string
MOV CL, 64H ; Length of string in CL (hex)
MOV AL, OFEH ; Mode control word to DO — D7
OUT OFEH, AL
MOV AX, 11H ; Load command word
OUT OFE, AL ; to transmit enables and error reset
WAIT: IN AL, OFEH ; Read status
AND AL, 0IH ; Check transmitter enable
JZ WAIT ; bit, if zero wait for the transmitter to be ready
MOV AL, [SI] ; If ready, first byte of string data is transmitted
OUT OFCH, AL
INC SI ; Point to next byte
DEC CL ; Decrement counter
INZ WAIT ; If CL is not zero, go for next byte
MOV AH, 4CH
INT 21H
CODE ENDS
END START

b) An ALP to initialize 8251 and receive 100 bytes of data

ASSUME CS: CODE
CODE SEGMENT

START: MOV AX, 3000H

MOV DS, AX

MOV S1, 4000H

MOV CL, 64H
MOV AL, 7EH

OUT OFEH, AL

MOV AL, 14H

OUT OFEH, AL

NXTBT: IN AL, OFEH
AND AL, 38H
JZ READY
MOV AL, 14H

OUT OFEH, AL

READY: IN AL, OFEH
AND AL, 02H
JZ READY
IN AL, OFCH
MOV [SI], AL
INC SI
DEC CL
JNZ NXTBT
MOV AH, 4CH
INT 21H

CODE ENDS
END START

; Data segment set to 3000H

; Pointer to destination offset

; Byte count in CL

; Only one stop bit for

; receiver is set

; Load command word to enable

; the receiver and disable transmitter

; Read status

; Check FE, OE and PE
; If zero, jump to READY

; If not zero, clear them

; Check RXRDY, if receiver is not ready

; wait

; If it is ready,

; receive the character

; Increment pointer to next byte
; Decrement counter

; Repeat, if CL is not zero

10

< Dg—Dys >
+ 5V
10K
A
% 7430
11
Az
8086 Ag©
As 12
iOR 13
oW I
RESET QUT 21
CLK (OUT) 20

Do-Dy XD
[RXD
8251A

c/D
RD RXC
WR
RESET >c
CLK

CTS GND

|
i 4 101 FROM
: a([:l | RS 232
RECEIVER
1489

FREQ.
160 kHz

1?| 4

Interfacing 8251 with 8086

11

DMA Controller 8257

The Intel 8257 is a 4-channel Direct Memory Access (DMA) controller. It is specifically
designed to simplify the transfer of data at high speeds for the Intel® microcomputer systems. Its

primary function is to generate, upon a peripheral request, a sequential memory address which
will allow the peripheral to read or write data directly to or from memory. Acquisition of the
system bus in accomplished via the CPU's hold function.

The 8257 has priority logic that resolves the peripherals requests and issues a composite
hold request to the CPU. It maintains the DMA cycle count for each channel and outputs a control
signal Jo notify the peripheral that the programmed number of DMA cycles is complete. Other
output control signals simplify sectored data transfers. The 8257 represents a significant savings
in component count for DM A-based microcomputer systems and greatly simplifies the transfer of
data at high speed between peripherals and memories.

8257 features:

It is a device to transfer the data directly between 10 device and memory without the CPU. So it
performs a high-speed data transfer between memory and I/O device.

The features of 8257 are:
1. The 8257 has four channels and so it can be used to provide DMA to four I/O devices
2. Each channel can be independently programmable to transfer up to 64kb of data by DMA.

3. Each channel can be independently perform read transfer, write transfer and verify

transfer.
Pin diagram 8257:
—_— L A _
ioR ! bl Bl I0R €= = Agh,
iow €4 2 394, B
m 3 33 ".'! EH — '*l"ﬁT
MEMW & ¢ 1T A, MEMR € = DD,
MARK &3 B TC MEMW ¢
READY —| 6 35 koA, ADSTB é— = DRQY - DRQ
HLDA 7 % HiA, AEN & 5
= |
ADSTB ¢ % A :
AEN HY £ kA, » -é
HRQ «J10 w0 § 3rf-V, &
e ~ [.]]
05 il @ 30 k3D, 4 .
CLK 12 é 29 k50, E =5 DACKD _ DACKS
RESET—{13 8 128§D, _
BAcKG 14 27k D, T
DACE 13 26 [: D, READY —X
pRQ3 !0 25 |1 DACKD RESET— — HRQ
prQ2 ! 24 |5 DACKI CLKk= — HLDA
DRQ! 18 B D, BV, — — MARK
pRQo —'? 22 k4D, (OV) GND ¢— —1C
GND 20 213D,

12

DRQo-DRQ3:

These are the four individual channel DMA request inputs, used by the peripheral devices for
requesting the DMA services. The DRQo has the highest priority while DRQ3 has the lowest one,
if the fixed priority mode is selected.

DACKo-DACK3:

These are the active-low DMA acknowledge output lines which inform the requesting peripheral
that the request has been honoured and the bus is relinquished by the CPU. These lines may act as
strobe lines for the requesting devices.

Do-D7:

= These are bidirectional, data lines used to interface the system bus with the internal data bus
of 8257.

= These lines carry command words to 8257 and status word from 8257, in slave mode, i.e.
under the control of CPU. The data over these lines may be transferred in both the directions.
When the 8257 is the bus master (master mode, i.e. not under CPU control), it uses Do-D7
lines to send higher byte of the generated address to the latch.

= This address is further latched using ADSTB signal. the address is transferred over Do-D7
during the first clock cycle of the DMA cycle. During the rest of the period, data is available
on the data bus.

IOR:

This is an active-low bidirectional tristate input line that acts as an input in the slave mode. In
slave mode, this input signal is used by the CPU to read internal registers of 8257.this line acts
output in master mode. In master mode, this signal is used to read data from a peripheral during a
memory write cycle.

IOW:

This is an active low bidirection tristate line that acts as input in slave mode to load the contents
of the data bus to the 8-bit mode register or upper/lower byte of a 16-bit DMA address register or
terminal count register. In the master mode, it is a control output that loads the data to a peripheral
during DMA memory read cycle (write to peripheral).

CLK:
This is a clock frequency input required to derive basic system timings for the internal operation
of 8257.

RESET:
This active-high asynchronous input disables all the DMA channels by clearing the mode register
and tristates all the control lines.

Ao0-A3:

These are the four least significant address lines. In slave mode, they act as input which select one
of the registers to be read or written. In the master mode, they are the four least significant
memory address output lines generated by 8257.

CS:

This is an active-low chip select line that enables the read/write operations from/to 8257, in slave
mode. In the master mode, it is automatically disabled to prevent the chip from getting selected
(by CPU) while performing the DMA operation.

A4-AT:

This is the higher nibble of the lower byte address generated by 8257 during the master mode of
DMA operation.

13

READY:
This is an active-high asynchronous input used to stretch memory read and write cycles of 8257
by inserting wait states. This is used while interfacing slower peripherals..

HRQ:

= The hold request output requests the access of the system bus.

= In the non-cascaded 8257 systems, this is connected with HOLD pin of CPU.

* In the cascade mode, this pin of a slave is connected with a DRQ input line of the master
8257, while that of the master is connected with HOLD input of the CPU.

HLDA:

The CPU drives this input to the DMA controller high, while granting the bus to the device. This
pin is connected to the HLDA output of the CPU. This input, if high, indicates to the DMA
controller that the bus has been granted to the requesting peripheral by the CPU.

MEMR: This active —-low memory read output is used to read data from the addressed memory
locations during DMA read cycles.

MEMW: This active-low three state output is used to write data to the addressed memory
location during DMA write operation.

ADST: This output from 8257 strobes the higher byte of the memory address generated by the
DMA controller into the latches.

AEN: This output is used to disable the system data bus and the control the bus driven by the
CPU, this may be used to disable the system address and data bus by using the enable input of the
bus drivers to inhibit the non-DMA devices from responding during DMA operations. If the 8257
is I/O mapped, this should be used to disable the other I/O devices, when the DMA controller
addresses is on the address bus.

TC:

= Terminal count output indicates to the currently selected peripherals that the present DMA
cycle is the last for the previously programmed data block.

= [fthe TC STOP bit in the mode set register is set, the selected channel will be disabled at the
end of the DMA cycle.

= The TC pin is activated when the 14-bit content of the terminal count register of the selected
channel becomes equal to zero.

= The lower order 14 bits of the terminal count register are to be programmed with a 14-bit
equivalent of (n-1), if n is the desired number of DMA cycles.

MARK:

The modulo 128 mark output indicates to the selected peripheral that the current DMA cycle is
the 128th cycle since the previous MARK output. The mark will be activated after each 128
cycles or integral multiples of it from the beginning if the data block (the first DMA cycle), if the
total number of the required DMA cycles (n) is completely divisible by 128.

Vee:
This is a +5v supply pin required for operation of the circuit.

GND:
This is a return line for the supply (ground pin of the IC).

14

Functional Block Diagram of 8257:

A
T I,
~ cHo |+— DRCGO
Duta A M 16
& L. 3 = K W BIT
| ADDR.
'

IOR - - CH1 = DR
oW =
L1 D 16
CLK — READ/ ™ BIT
— ADDR. ——
“ESEH' WRITE (== | .| ©NTR. |—=DAcK1
if——fjp
By e I
Ag —a—i-
By

cHz = DRQ2

K i < >
ﬁ:: L] CNTR. |—= DACK2

CH3 p=— DRQ3

=
MEMW —~—
AEN =— - ‘
ADSTB ~=—
G ~—od CNTR. |—= DACK3

g
57
D
=]

\V/HTEFUW. BUS

Internol! Architecture of 8257

The functional blocks of 8257 are data bus buffer, read/write logic, control logic,
priority resolver and four numbers of DMA channels.

Each channel has two programmable 16-bit registers named as address register and count
register.

The 8257 is a programmable. Direct Memory Access (DMA) device which, when coupled
with a single Intel® 8212 I/O port device, provides a complete four-channels DMA controller for
use in Intel® microcomputer systems. After being initialized by software, the 8257 could transfer
a block of data, containing up to 16.384 bytes, between memory and a peripheral device directly,
without further intervention required of the CPU. Upon receiving a DMA transfer request from an
enabled peripheral, the 8257:

1. Acquires control of the system bus.
2. Acknowledges that requesting peripheral which is connected to the highest priority channel.

3. Outputs the least significant eight bits of the memory address onto system address lines
AO0-A7. outputs the most significant eight bits of the memory address to the 8212 I/O port
via.the data bus (the 8212 places these address bits on lines A8-A15), and

15

4. Generates the appropriate memory and 1/O read/ write control signals that cause the
peripheral to receive or deposit a data byte directly from or to the addressed location in
memory.

8257 Modes:

The 8257 processor works on two modes:
1) Master mode
2) Slave mode

= An active-low input which enables the I/O Read or /O Write input when the 8257 is being
read or programmed in the "slave" mode.

= In the "master" mode. CS is automatically disabled to prevent the chip from selecting itself
while performing the DMA function.

Control word:

= Address register is used to store the starting address of memory location for DMA data
transfer.

» The address in the address register is automatically incremented after
every operation (read/write/verify transfer).

= The count register is used to count the number of byte or word transferred by DMA

The format of count register is

B BM BIJ BIZ Bli BIO B9 BS B7 B6 BS B4 BJ BZ Bl BU
l l l4-bit::ount

0 0= Venfy transfer

0 1 = Write transfer

1 0 =Read transfer

1 1 =Illegal

= 14-bits B0-B13 is used to count value and a 2-bits is used for indicate the type of DMA
transfer (Read/Write/ transfer).

= In read transfer the data is transferred from memory to I/O device.

= In write transfer the data is transferred from I/O device to memory.

= Verification operations generate the DMA addresses without generating the DMA
memory and I/O control signals.

= The 8257 has two eight bit registers called mode set register and status register.

The format of mode set register is

16

- B7 Bﬁ Bs B4 B Bz l Bl Bo : %"

3

| ALjrcs [Ew|re [EN3[EN2 [EN1{ENO |

1 = Enable channel - 0
0 = Disable channel - 0

|——) 1. = Rotating Priority
O = Fixed Priority

——> 1 = Enable channel - 1
l——> 0 = Disable channel -

L——> 1 = Extended write selection
0 = Normal write selection

————— > 1 = Enable channel - 2
-— > 0= Dlsable channel - 2

—— > 1 = Stop DMA on terminal count
) > 1= Enable channel - 3
—> 0 = Disable channel - 3

—~—--~——-)- 1 = Enable auto reload
0 = Pisable auto reload

The use of mode set register is:

Nk W=

Enable/disable a channel.
Fixed/rotating priority

Stop DMA on terminal count.
Extended/normal write time.
Auto reloading of channel-2.

The bits B0, B1, B2, and B3 of mode set register are used to enable/disable channel -0, 1, 2
and 3 respectively. A one in these bit position will enable a particular channel and a zero
will disable it

If the bit B4 is set to one, then the channels will have rotating priority and if it zero then the
channels wilt have fixed priority.
* In rotating priority after servicing a channel its priority is made as lowest.
* In fixed priority the channel-0 has highest priority and channel-2 has lowest
priority.

If the bit BS is set to one, then the timing of low write signals (MEMW and IOW) will be
extended.

If the bit B6 is set to one then the DMA operation is stopped at the terminal count.
The bit B7 is used to select the auto load feature for DMA channel-2.

When bit B7 is set to one, then the content of channel-3 count and address registers are loaded
in channel-2 count and address registers respectively whenever the channel-2 reaches
terminal count. When this mode is activated the number of channels available for

DMA reduces from four to three.

Rotating Priority Bit 4

in the Rotating Priority Mode. the priority of the channels
has a circular sequence. After each DMA cycle. the
priority of each channel changes. The channel which had
just been serviced will have the lowest priority.

G’S—

> @

17

If the ROTATING PRIORITY bit is not set (set to a zero).
each DMA channel has a fixed priority. in the fixed priority
mode. Channel O has the highest priority and Channel 3
has the lowest priority. If the ROTATING PRIORITY bit s
set to a one, the priority of each channel changes after
each DMA cycle (not each DMA request). Each channel
moves up to the next highest priority assignment, while
the channel which has just been serviced moves to the
lowest priority assignment:

CHANNEL— | CH-0|CH-1 |CH-2 CH-3]
JUST SERVICED

Priority —» . Highest CH-1 | CH-2|CH-3 |[CH-0
Assignments CH-2|CH-3|CH-0O |CH-1
CH-3|CH-0]|CH-1 |[CH-2

Lowest CH-0|CH-1 | CH-2|CH-3

The format of status register of 8257 is shown in fig. below:

B7 .Bﬁ_.BSA B4 B, Bz'Bf Bo

0| o0 | o| up|TC3|TC2|TCI TCO

L——~> 1 =Channel-0 has reached terminal count
— 1 = Channel-1 has reached terminal count
> 1 = Channel-2 has reached terminal count

—> 1 = Channel-3 has reached terminal count

> 1 = Channel-2 is reloaded from channel -3

* The bit B0, B1, B2, and B3 of status register indicates the terminal count status of
channel-0, 1,2 and 3 respectively. A one in these bit positions indicates that the particular
channel has reached terminal count.

* These status bits are cleared after a read operation by microprocessor.

* The bit B4 of status register is called update flag and a one in this bit position indicates
that the channel-2 register has been reloaded from channel-3 registers in the auto
load mode of operation.

The internal addresses of the registers of 8257 are listed in table.

18

8257 Register Selection

Binary Address
Deecoder bnpat Inpat te pddres Hexa
Register and casble plns of §257 Addvess
A, 4@‘ A, A, A, A, A, A
Channel-0 DMA address register L I | 1 0 a 0 0 o0 60
Channel-0 count register 1 -1 © o 0 0 1 61
Channel-1 DMA address register o-1 1 © 0 0 1 0 62
Channel-1 count register o 1 1 © o 0o 1 1 63
Channel-2 DMA address register o 1 1 0 0O .1 0 0 64
Channel-2 count register o 1 1 0 0O 1 0 1 65
Channel-3 DMA address register o 1 1 0 o1 1 0 66
Channel-3 count register o 1 & 0 o 1 1 1 67
Mode set register (Write only) o 1 1 0 i 0 0 0 68
Status register (Read only) o 1 1 0 1 0 0 0 68
DMA operation state diagram:
RESET
S'I
Pall DRQ Lines If DRQ =0
it DAQ = 1 make HRQ = 1
IHDRO =1 e
S,
Foll HLDA HHLDA =0
resolve pricrities of DRQ, _, &
ITHLDA =1 L
5
Present lower addrass
and Lalch upper address
X
o Sp
= Enable DACK, read command
E and advance write command
L 3
if requi :!ihsxa{:hwm' it s) AW
required then write - &
command, mark and TC Varify =0 ml:ia‘:ﬁﬂ’
o
L Ready =0
8,
Reset enabls if TC stop and TC are active,
disable DACK, mark and TC Ready = 1
Aesel HRQ I HLDA = 0 or DRO =0
HLDA™. DRQ"

Figure 1414 State diagram of 8257.

19

Single Byte Transfers

= A single byte transfer is initiated by the I/O device raising the DRQ line of one channel of the
8257. If the channel is enabled, the 8257 will output a HRQ to the CPU.

= The 8257 now waits until a HLDA is received insuring that the system bus is free for its use.
Once HLDA is received the DACK line for the requesting channel is activated (LOW). The
DACK line acts as a chip select for the requesting I/O device.

= The 8257 then generates the read and write commands and byte transfer occurs between the
selected I/0O device and memory. After the transfer is complete, the DACK line is set HIGH
and the HRQ line is set LOW to indicate to the CPU that the bus is now free for use.

= DRQ must remain HIGH until DACK is issued to be recognized and must go LOW before S4
of the transfer sequence to prevent another transfer from occurring. (See timing diagram.)

Consecutive Transfers

= If more than one channel requests service simultaneously, the transfer will occur in the same
way a burst does. No overhead is incurred by switching from one channel to another.

= In each S4 the DRQ lines are sampled and the highest priority request is recognized during the
next transfer.

= A burst mode transfer in a lower priority channel will be overridden by a higher priority
request. Once the high priority transfer has completed control will return to the lower priority
channel if its DRQ is still active.

= No extra cycles are needed to execute this sequence and the HRQ tine remains active until all
DRQ lines go LOW.

Control Override

The continuous DMA transfer mode described above can be interrupted by an external device by
lowering the HLDA line. After each DMA transfer the 8257 samples the HLDA line to insure that
it is still active. If it is not active, the 8257 completes the current transfer, releases the HRQ line
(LOW) and returns to the idle state. If DRQ lines are still active the 8257 will raise the HRQ line
in the third cycle and proceed normally. (See timing diagram.)

Ready

The 8257 has a Ready input similar to the 8080A and the 8085A. The Ready line is sampled in
State 3. If Ready is LOW the 8257 enters a wait state. Ready is sampled during every wait state.
When Ready returns HIGH the 8257 proceeds to State 4 to complete the transfer. Ready is used to
interface memory or I/O devices that cannot meet the bus set up times required by the 8257.

Speed: The 8257 uses four clock cycles to transfer a byte of data. No cycles are lost in the master
to master transfer maximizing bus efficiency. A 2MHz clock input will allow the 8257 to transfer
at a rate of 500K bytes/second.

Memory Mapped I/0 Configurations

The 8257 can be connected to the system bus as a memory device instead of as an I/O device for
memory mapped I/O configurations by connecting the system memory control lines to the 8257s
I/O control lines and the system I/O control lines to the 8257s memory control lines.

This configuration permits use of the 8080's considerably larger repertoire of memory instructions
when reading or loading the 8257s registers. Note that with this connection, the programming of
the Read (bit 15) and Write (bit 14) bits in the terminal count register will have a different
meaning.

20

Interfacing 8257 with 8086

Once a DMA controller is initialized by a CPU property, it is ready to take control of the
system bus on a DMA request, either from a peripheral or itself (in case of memory-to-
memory transfer).

The DMA controller sends a HOLD request to the CPU and waits for the CPU to assert the
HLDA signal. The CPU relinquishes the control of the bus before asserting the HLDA signal.

A conceptual implementation of the system is shown in Figure

S

CPU MEMORY
A—Address Bus
B—Data Bus
H:.D HLDA C—Control Bus
'
1 ke e
i O
|
DMA
CONTROLLER PERIPHERAL J

Once the HLDA signal goes high, the DMA controller activates the DACK signal to the
requesting peripheral and gains the control of the system bus.

The DMA controller is the sole master of the bus, till the DMA operation is over. The CPU
remains in the HOLD status (all of its signals are tri-state except HOLD and HLDA), till the
DMA controller is the master of the bus.

In other words, the DMA controller interfacing circuit implements a switching arrangement
for the address, data and control busses of the memory and peripheral subsystem from/to the
CPU to/from the DMA controller.

21

UNIT V: INTEL 8051 MICRCONTROLLER

Introduction:
A decade back the process and control operations were totally implemented by the

Microprocessors only. But now a day the situation is totally changed and it is occupied by the new
devices called Microcontroller. The development is so drastic that we can’t find any electronic gadget
without the use of a microcontroller. This microcontroller changed the embedded system design so simple
and advanced that the embedded market has become one of the most sought after for not only

entrepreneurs but for design engineers also.

What is a Microcontroller?
A single chip computer or A CPU with all the peripherals like RAM, ROM, 1/O Ports, Timers,

ADCs etc... onthe same chip. For ex: Motorola’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16X etc...

MICROPROCESSORS & MICROCONTROLLERS:

Microprocessor:

A CPU built into a single VLSI chip is called a microprocessor. It is a general-purpose device and
additional external circuitry are added to make it a microcomputer. The microprocessor contains
arithmetic and logic unit (ALU), Instruction decoder and control unit, Instruction register, Program
counter (PC), clock circuit (internal or external), reset circuit (internal or external) and registers. But the

microprocessor has no on chip I/O Ports, Timers , Memory etc.

For example, Intel 8085 is an 8-bit microprocessor and Intel 8086/8088 a 16-bit microprocessor. The

block diagram of the Microprocessor is shown in Fig.1

Arvithmetic and Logic Unit
(AT}

Accmnulator

Working Registers

FProgram Counter Stack Poimter (5P)
®C)
Clock Circuit Interrupt

Circuits

Fig.1 Block diagram of a Microprocessor.

Microcontroller:

A microcontroller is a highly integrated single chip, which consists of onchip CPU (Central Processing
Unit), RAM (Random Access Memory), EPROM/PROM/ROM (Erasable Programmable Read Only
Memory), I/O (input/output) — serial and parallel, timers, interrupt controller. For example, Intel 8051 is

8-bit microcontroller and Intel 8096 is 16-bit microcontroller. The block diagram of Microcontroller is

shown in Fig.2.

ALU Timer/Counter | | Stack Pointer(SP)
Accumulator(4)
Interrupt Registers
Crreults
Internal
: Internal
ROM ik
(lock ;
Cireudt L0 Ports
Program Counter

Fig.2.Block Diagram of a Microcontroller

Distinguish between Microprocessor and Microcontroller

S. No Microprocessor Microcontroller
A microprocessor is a general)) _))
_ o A microcontroller is a dedicated chip which

1 purpose device which is called a _))

is also called single chip computer.

CPU

A microprocessor do not contain A microcontroller includes RAM, ROM,

2 onchip I[/OPorts, Timers, Memories §erm1 and I')ara.llel 1r‘1terfa(fe‘, timers,]

interrupt circuitry (in addition to CPU) ina

etc.. single chip.

Microprocessors are most . .
Microcontrollers are used in small,

3 | commonly used as the CPU in minimum component designs performing
microcomputer systems control-oriented applications.

A Microprocessor instructions are Microcontroller instructions are both bit
mainly nibble or byte addressable addressable as well as byte addressable.
Microprocessor instruction sets are | Microcontrollers have instruction sets

5 mainly intended for catering to catering to the control of inputs and
large volumes of data. outputs.

. Microprocessor based system Microcontroller based system design is
design is complex and expensive rather simple and cost effective

_ The instruction set of a Microcontroller is
The Instruction set of))
)]) very simple with less number of
7 | microprocessor is complex with i))
_) mstructions. For, ex: PIC microcontrollers
large number of instructions.))
have only 35 instructions.
A microprocessor has zero status]
8 A microcontroller has no zero flag.

flag

EVOLUTION OF MICROCONTROLLERS:

The first microcontroller TMS1000 was introduced by Texas Instruments in the year 1974. In the
year 1976, Motorola designed a Microprocessor chip called 6801 which replaced its earlier chip 6800
with certain add-on chips to make a computer. This paved the way for the new revolution in the history of
chip design and gave birth to a new entity called “Microcontroller”. Later the Intel company produced
its first Microcontroller 8048 with a CPU and 1K bytes of EPROM, 64 Bytes of RAM an 8-Bit Timer
and 27 I/O pins in 1976. Then followed the most popular controller 8051 in the year 1980 with 4K bytes
of ROM,128 Bytes of RAM , a serial port, two 16-bit Timers , and 32 I/O pins. The 8051 family has
many additions and improvements over the years and remains a most acclaimed tool for today’s circuit
designers. INTEL introduced a 16 bit microcontroller 8096 in the year 1982 . Later INTEL introduced
80c196 series of 16-bit Microcontrollers for mainly industrial applications. Microchip, another company
has introduced an 8-bit Microcontroller PIC 16C64 in the year 1985.The 32-bit microcontrollers have
been developed by IBM and Motorola. MPC 505 is a 32-bit RISC controller of Motorola. The 403 GA is
a 32 -bit RISC embedded controller of IBM.

In recent times ARM Company (Advanced RISC machines) has developed and introduced 32 bit

controllers for high-end application devices like mobiles, [Pods etc...

TYPES OF MICROCONTROLLERS:

Microcontrollers can be classified on the basis of internal bus width, architecture, memory and
mstruction set as 4-bit, 8-bit, 16-bit and 32-bit microcontrollers.

4-bit Microcontrollers : These 4-bit microcontrollers are small size, minimum pin count and low cost
controllers which are widely used for low end applications like LED & LCD display drivers ,portable
battery chargers etc.. Therr power consumption is also low. The popular 4-bit controllers are Renasa
M34501 which is a 20 pin DIP chip with 4kB of ROM, 256 Bytes of RAM,2-Counters and 14 1/O Pins.
Similarly ATAMS862 series from ATMEL.

8-bit Microcontrollers : These are the most popular and widely used microcontrollers . About 55% of all
CPUs sold in the world are 8-bit microcontrollers only. The 8-bit microcontroller has 8-bitinternal bus and
the ALU performs all the arithmetic and logical operations on a byte instruction. The well known 8-bit
microcontroller is 8051 which was designed by Intel in the year 1980 for the use in embedded systems.
Other 8-bit microcontrollers are Intel 8031/8052 and Motorola MC68HC11 and AVR Microcontrollers,
Microchip’s PIC Microcontrollers 12C5XX ,16C5X and 16C505 etc...

16-bit Microcontrollers: When the microcontroller performs 16-bit arithmetic and logical operations at
an instruction, the microcontroller is said to be a 16-bit microcontroller. The internal bus width of 16-bit
microcontroller is of 16-bit. These microcontrollers are having increased memory size and speed of
operation when compared to 8-bit microcontrollers. These are most suitable for programming in High-
level languages like C or C™~ They find applications in disk drivers, modems, printers, scanners and
servomotor control. Examples of 16-bit microcontrollers are Intel 8096 family and Motorola MC68HC12
and MC68332 families, the performance and computing capability of 16 bit microcontrollers are

enhanced with greater precision as compared to the 8-bit microcontrollers.

32-Bit Microcontrollers: These microcontrollers used in high-end applications like Automotive control,

Communication networks, Robotics, Cell phones ,GPRS & PDAs etc..

For EX: PIC32, ARM 7, ARM9, SHARP LH79520, ATMEL 32 (AVR),

Texas Instrument’s —. TMS320F2802x/2803x etc... are some of the popular 32-bit microcontrollers.
COMMERCIAL MICROCONTROLLERS

There are various manufacturers who are supplying various types of microcontrollers suitable for
different applications depending on the power consumption and the available features..They are given

below in tables. First the various members of INTEL 51 family are given in below table.

INTEL MCS 51 Family

On chip RAM | On chip program
Microcontroller (Bytes) memory Timers/Counters | Interrupts Serial ports
8031 128 None 2 5 1
8032 256 None 3 6 1
8051 128 4K ROM 2 5 1
8052 256 8K ROM 3 6 1
8751 128 4K EPROM 2 5 1
8752 256 8K EPROM 3 6 1

MICROCONTROLLER DEVELOPMENT TOOLS:

To develop an assembly language program we need certain program development tools. An
assembly language program consists of Mnemonics which are nothing but short abbreviated English
instructions given to the controller. The various development tools required for Microcontroller

programming are explained below.

1. Editor: An Editor is a program which allows us to create a file containing the assembly language
statements for the program. Examples of some editors are PC writes WordStar. As we type the program
the editor stores the ACSII codes for the letters and numbers in successive RAM locations. If any typing
mistake is done editor will alert us to correct it. If we leave out a program statement an editor will let
you move everything down and insert a line. After typing all the program we have to save the program .

This we call it as source file. The next step is to process the source file with an assembler.

Ex: Sample. asm

2. Assembler: An Assembler is used to translate the assembly language mnemonics into machine
language (i.e binary codes). When you run the assembler it reads the source file of your program from
where you have saved it. The assembler generates a file with the extension .hex. This file consists of

hexadecimal values encoding a sequence of data and their starting offset or absolute address.

3. Compiler: A compiler is a program which converts the high level language program like “C” into
binary or machine code. Using high level languages it is easy to manage complex data structures which
are often required for data manipulation. Because of its ease, flexibility and debug options now a days the
compilers have become very popular in the market. Compilers like Keil, Ride and IAR workbench are

very popular.

3. Debugger/Simulator: A debugger is a program which allows executes the program, and
troubleshoots or debugs it. The debugger allows looking into the contents of registers and memory
locations after the program runs. We can also change the contents of registers and memory locations and
rerun the program. Some debuggers allow stopping the program after each instruction so that you can
check or alter memory and register contents. This is called single step debug. A debugger also allows
setting a breakpoint at any point in the program. If we insert a break point, the debugger will run the

program up to the instruction where the breakpoint is put and then stop the execution.

A simulator is a software program which virtually executes the instructions similar to a
microcontroller and shows the results. This will help in evaluating the results without committing any

errors. By doing so we can detect the possible logic errors

INTEL 8051 MICRCONTROLLER:

The 8051 microcontroller is a very popular 8-bit microcontroller introduced by Intel in the year
1981 and it has become almost the academic standard now a days. The 8051 is based on an 8-bit CISC
core with Harvard architecture. Its 8-bit architecture is optimized for control applications with extensive
Boolean processing. It is available as a 40-pin DIP chip and works at +5 Volts DC. The salient features of

8051 controller are given below.

SALIENT FEATURES: The salient features of 8051 Maicrocontroller are

[a—

4 KB on chip program memory (ROM or EPROM)).
128 bytes on chip data memory (RAM).

8-bit data bus

16-bit address bus

32 general purpose registers each of 8 bits

Two -16 bit timers TO and T,

Five Interrupts (3 internal and 2 external).

Four Parallel ports each of 8-bits (PORTO, PORTI, PORT2, PORT3) with a total 0o£32 I/O lines.

A T A R o

One 16-bit program counter and One 16-bit DPTR (data pointer)
10. One 8-bit stack pointer
11. One Microsecond instruction cycle with 12 MHz Crystal.

12. One full duplex Serial Communication port.

PIN Diagram of 8051 Microcontroller:

The 8051 microcontroller is available as a 40 pin DIP chip and it works at +5 volts DC. Among
the 40 pins, a total of 32 pins are allotted for the four parallel ports PO, P1, P2 and P3 i.e each port
occupies 8-pins . The remaining pins are VCC, GND, XTAL1, XTAL2, RST, EA, PSEN.

AN
P1.0[]1 40] Vec
P1.1[]2 39 [] P0.0 (ADO)
P12]3 38 [] Po.1 (AD1)
P1.3[]4 37 [] P0.2 (AD2)
P14[]5 36 [] P0.3 (AD3)
P15[]6 35 [1 PO0.4 (AD4)
P17 34] PO.5(ADS)
P1.7(]8 33 [] P06 (ADS)
RST[] 9 32 |7 PO.7 (ADT)
(RXD) P3.0] 10 8051 31| EAWVPP
(TXD) P3.1] 11 30 |] ALE/PROG
(INTO) P3.2 [] 12 29 |1 PSEN
(INTTH P3.3[]13 28 | p2.7 (A15)
(TO) P3.4]| 14 277 p2.6 (A14)
(T1)P3.5[]15 26 |1 P2.5 (A13)
(WR) P35 []16 25 |1 p2.4 (A12)
{RD) P3.7] 17 24 |1 p2.3 (A11)
XTAL2 [] 18 23 | P22 (A10)
XTALT 119 22 |1 p2.1 (A9
GND [] 20 21 | P2.0 (A8)

XTALI1, XTAL2: These two pins are connected to Quartz crystal oscillator which runs the on-chip
oscillator. The quartz crystal oscillator is connected to the two pins along with a capacitor of 30pF as

shown in the circuit. If we use a source other than the crystal oscillator, it will be connected to XTALLl
and XTAL2 is left unconnected.

C2

o—)i XTAL2
30 pF

Ci T :

Y XTAL1

_L GND

I
C'rvstal

RST: The RESET pin is an input pin and it is an active high pin. When a high pulse is applied to this pin
the microcontroller will reset and terminate all activities. Upon reset all the registers except PC will reset

to 0000 Value and PC register will reset to 0007 value.

E

A (External Access): This pin is an active low pin. This pin is connected to ground when
microcontroller is accessing the program code stored in the external memory and connected to Vcc when

it is accessing the program code in the on chip memory. This pin should not be left unconnected.

PSEN (Program Store Enable): This is an output pin which is active low. When the microcontroller
is accessing the program code stored in the external ROM, this pin is connected to the OE (Output

Enable) pin of the ROM.

ALE (Address latch enable): This is an output pin, which is active high. When connected to external
memory , port 0 provides both address and data i.e address and data are multiplexed through port 0 . This
ALE pin will de-multiplex the address and data bus .When the pin is High , the AD bus will act as address

bus otherwise the AD bus will act as Data bus.

P0.0- P0.7(AD0-AD7) : The port 0 pins multiplexed with Address/data pins .If the microcontroller is

accessing external memory these pins will act as address/data pins otherwise they are used for Port O pins.

P2.0- P2.7(A8-A15) : The port2 pins are multiplexed with the higher order address pins .When the
microcontroller is accessing external memory these pins provide the higher order address byte otherwise

they act as Port 2 pins.

P1.0- P1.7: These 8-pins are dedicated for Portl to perform input or output port operations.

P3.0- P3.7: These 8-pins are meant for Port3 operations and also for some control operations like Read,
Write, Timer0, Timerl, INTO, INT1, RxD and TxD

ARCHITECTURE & BLOCK DIAGRAM OF 8051 MICROCONTROLLER:

The architecture of the 8051 microcontroller can be understood from the block diagram. It has Harvard
architecture with RISC (Reduced Instruction Set Computer) concept. The block diagram of 8051
microcontroller is shown in Fig 3. belowl.It consists of an 8-bit ALU, one 8-bit PSW(Program Status
Register), A and B registers , one 16-bit Program counter , one 16-bit Data pointer register(DPTR),128
bytes of RAM and 4kB of ROM and four parallel I/O ports each of 8-bit width. 8051 has 8-bit ALU
which can perform all the 8-bit arithmetic and logical operations in one machine cycle. The ALU is

associated with two registers A & B

Block Diagram

Voo

SHD T F T
=" RAM ADDR. s L
| REGISTER l—bl A | | LATCH ‘ pLE:{RTz FLASH I‘i
F F
£ F k-
r
PROG RAM
=] STACHK
ACC ADDRESS
| REGISTER | | | POINTER REGISTER
b
BUFFER

P
AL INCREMENTER

INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS

~ - PROG RAM

—— COUNTER
3
r

Iy

FSER &
ALEFRCES - TIRIMNG B TROGTIN - L o
EA F Vep CONTROL REGISTER -
RST e

b
PORT 1 PORT 3
LATCH LATCH
o

E ______________ EEESEas s TS s oS

2 ‘_‘ : e P10 - P1.T P3.0 - PA.T

Fig.3. Internal Architecture of 8051 Microcontroller

A and B Registers : The A and B registers are special function registers which hold the results of many
arithmetic and logical operations of 8051.The A register is also called the Accumulator and as its name
suggests, is used as a general register to accumulate the results of a large number of instructions. By
default it is used for all mathematical operations and also data transfer operations between CPU and any

external memory.

The B register is mainly used for multiplication and division operations along with A register.

MULAB : DIV AB.
It has no other function other than as a location where data may be stored.

The R registers: The "R" registers are a set of eight registers that are named RO, R1, etc. up to
R7. These registers are used as auxiliary registers in many operations. The "R" registers are also used to

temporarily store values.

10

10

Program Counter (PC): 8051 has a 16-bit program counter . The program counter always points to the
address of the next instruction to be executed. After execution of one instruction the program counter is
incremented to point to the address of the next instruction to be executed. It is the contents of the PC that
are placed on the address bus to find and fetch the desired instruction. Since the PC is 16-bit width, 8051
can access program addresses from 0000H to FFFFH, a total of 6kB of code.

Stack Pointer Register (SP): It is an 8-bit register which stores the address of the stack top. i.e the Stack
Pointer is used to indicate where the next value to be removed from the stack should be taken from.
When a value is pushed onto the stack, the 8051 first increments the value of SP and then stores the value
at the resulting memory location. Similarly when a value is popped off the stack, the 8051 returns the
value from the memory location indicated by SP, and then decrements the value of SP. Since the SP is
only 8-bit wide it is incremented or decremented by two. SP is modified directly by the 8051 by six
instructions: PUSH, POP, ACALL, LCALL, RET, and RETL It is also used intrinsically whenever an
interrupt is triggered.
STACK in 8051 Microcontroller: The stack is a part of RAM used by the CPU to store information
temporarily. This information may be either data or an address . The CPU needs this storage area as there
are only limited number of registers. The register used to access the stack is called the Stack pointer
which is an 8-bit register. So, it can take values of 00 to FF H. When the 8051 is powered up, the SP
register contains the value 07.1.e the RAM location value 08 is the first location being used for the stack
by the 8051 controller
There are two important instructions to handle this stack. One is the PUSH and the other is the
POP. The loading of data from CPU registers to the stack is done by PUSH and the loading of the
contents of the stack back into a CPU register is done by POP.
EX: MOV R6, #35 H
MOV RI, #21 H
PUSH 6
PUSH 1
In the above instructions the contents of the Registers R6 and R1 are moved to stack and they occupy
the 08 and 09 locations of the stack. Now the contents of the SP are incremented by two and it is 0A
Similarly POP 3 instruction pops the contents of stack into R3 register. Now the contents of the SP is
decremented by 1
In 8051 the RAM locations 08 to 1F (24 bytes) can be used for the Stack. In any program if we need more
than 24 bytes of stack, we can change the SP point to RAM locations 30-7F H. This can be done with the
instruction MOV SP, # XX.

11

11

Data Pointer Register (DPTR): It is a 16-bit register which is the only user-accessible. DPTR, as the
name suggests, is used to point to data. It is used by a number of commands which allow the 8051 to
access external memory. When the 8051 accesses external memory it will access external memory at the
address indicated by DPTR. This DPTR can also be used as two 8-registers DPH and DPL.

Program Status Register (PSW): The 8051 has a 8-bit PSW register which is also known as Flag
register. In the 8-bit register only 6-bits are used by 8051.The two unused bits are user definable bits. In
the 6-bits four of them are conditional flags .They are Carry —CY, Auxiliary Carry-AC, Parity-P, and

Overflow-OV .These flagbits indicate some conditions that resulted after an instruction was executed.

D7 Do
CY |AC | FO |IRS1|RSO0|OV | - P

CY PSW.7 CarryFlag
AC PSW.6 Auxiliary Carry Flag
FO PSW.5 Flag 0 available for general purpose .
RS1 PSW 4 Register Bank select bit 1
RSO PSW.3 Register bank select bit 0
ov PSW.2 Overflow flag
--- PSW.1 User definable flag
P PSW.0 Parity flag .set/cleared by hardware.

The bits PSW3 and PSW4 are denoted as RSO and RS1 and these bits are used to select the bank registers
of the RAM location. The meaning of various bits of PSW register is shown below.

The selection of the register Banks and their addresses are given below.

RS1 RS0 Register Bank Address
0 0 0 00H-07H
0 1 1 08H-O0FH
1 0 2 10H-17H
1 1 3 18H-1FH

12

12

External interrupts

l l On-chip Timer/Counter
ROM for
Igter:‘u]:t program On-chip Timer1l |+ } Counter
ontro — .
code RAM Timer0 |._ Inputs
Bus 41/0 Ports Serial
osc Control Port
AR
|:| POP1P2P3 TxD RxD
-
L L Address/Data
Memory Organization:

The 8051 microcontroller has 128 bytes of Internal RAM and 4kB of on chip ROM .The RAM is
also known as Data memory and the ROM is known as program memory. The program memory is also
known as Code memory .This Code memory holds the actual 8051 program that is to be executed. In
8051 this memory is limited to 64K .Code memory may be found on-chip, as ROM or EPROM. It may
also be stored completely off-chip in an external ROM or, more commonly, an external EPROM. The
8051 has only 128 bytes of Internal RAM but it supports 64kB of external RAM. As the name suggests,
external RAM is any random access memory which is off-chip. Since the memory is off-chip it is not as
flexible in terms of accessing, and is also slower. For example, to increment an Internal RAM location by
1, it requires only 1 instruction and 1 instruction cycle but to increment a 1-byte value stored in External

RAM requires 4 instructions and 7 instruction cycles. So, here the external memory is 7 times slower.

Inte rnal RAM OF 8051:

This Internal RAM is found on-chip on the 8051 .So it is the fastest RAM available, and it is also the
most flexible in terms of reading, writing, and modifying it’s contents. Internal RAM is volatile, so when
the 8051 is reset this memory is cleared. The 128 bytes of internal RAM is organized as below.
(1) Four register banks (BankO, Bank1, Bank2 and Bank3) each of 8-bits (total 32 bytes). The

default bank register is BankO. The remaining Banks are selected with the help of RSO

and RS1 bits of PSW Register.
(i1) 16 bytes of bit addressable area and

13

13

(111) 80 bytes of general purpose area (Scratch pad memory) as shown in the diagram below.

This area is also utilized by the microcontroller as a storage area for the operating stack.

F

General purpose

Scratch pad memory
(80 Bytes)

30
F

Bit addressible

area (16 Bytes)
2
1F

Register Bank 3

Register Bank 2
10
o Register Bank 1
03
07 R7
06 R6
& o Register
03 rz Bank 0
02 R
0l Rl
00 RO

Byte NTERNAL RAM

addresses

The 32 bytes of RAM from address 00 H to 1FH are used as working registers organized as four banks of

eight registers each. The registers are named as RO-R7 .Fach register can be addressed by its name or by

its RAM address.

For EX: MOV A,R7 or MOVRT7, #05H

Internal ROM (On —chip ROM): The 8051 microcontroller has 4kB of on chip ROM but it can be
extended up to 64kB. This ROM is also called program memory or code memory. The CODE segment is
accessed using the program counter (PC) for opcode fetches and by DPTR for data. The external ROM is
accessed when the EA(active low) pin is connected to ground or the contents of program counter exceeds

OFFFH.When the Internal ROM address is exceeded the 8051 automatically fetches the code bytes from

the external program memory.
14

14

FFFFH

External ROM

OFFFH
Internal ROM

0000H

SPECIAL FUNCTION REGISTERS (SFRs): In 8051 microcontroller there certain registers which
uses the RAM addresses from 80h to FFh and they are meant for certain specific operations. These

registers are called Special function registers (SFRs). Some ofthese registers are bit addressable also.

The list of SFRs and their functional names are given below. In these SFRs some of them are related to
I/O ports (PO, P1, P2 and P3) and some of them are meant for control operations (TCON, SCON,
PCON...) and remaining are the auxiliary SFRs, in the sense that they don't directly configure the 8051.

S.No Symbol Name of SFR Address (Hex)
1 ACC* Accumulator 0E0
2 B* B-Register 0F0
3 PSW* Program Status word register 0DO
4 SP Stack Pointer Register 81

DPL Data pointer low byte 82
5 DPTR
DPH Data pointer high byte 83
6 PO* Port 0 80
P1* Port 1 90
8 p2* Port 2 0A
9 p3* Port 3 0B
10 Ip* Interrupt Priority control 0B8

15

15

11 IE* Interrupt Enable control 0AS8
12 TMOD Tmier mode register 89
13 TCON* Timer control register 88
14 THO Timer 0 Higher byte 8C
15 TLO Timer 0 Lower byte 8A
16 TH1 Timer 1Higher byte 8D
17 TL1 Timer 1 lower byte 8B
18 SCON* Serial control register 98
19 SBUF Serial buffer register 929
20 PCON Power control register 87

The * indicates the bit addressable SFRs

Table: SFRs of 8051 Microcontroller

PARALLEL 1 /0 PORTS

The 8051 microcontroller has four parallel I/O ports, each of 8-bits .So; it provides the user 32 1/O lines
for connecting the microcontroller to the peripherals. The four ports are PO (Port 0), P1 (Portl), P2 (Port
2) and P3 (Port3). Upon reset all the ports are output ports. In order to make them input, all the ports must
be set i.e a high bit must be sent to all the port pins. This is normally done by the instruction “SETB”.
Ex: MOV A, #0FFH ; A=FF

MOV PO, A ; make PO an input port
PORT 0:
Port 0 is an 8-bit I/O port with dual purpose. If external memory is used, these port pins are used for the
lower address byte address/data (ADg-AD7), otherwise all bits of the port are either input or output.
Unlike other ports, Port 0 is not provided with pull-up resistors internally, so for PORTO pull-up resistors
of nearly 10k are to be connected externally as shown in the fig.2.
Dual role of port 0: Port 0 can also be used as address/data bus (AD0-AD7), allowing it to be used for
both address and data. When connecting the 8051 to an external memory, port 0 provides both address
and data. The 8051 multiplexes address and data through port 0 to save the pins. ALE indicates whether
PO has address or data. When ALE = 0, it provides data DO-D7, and when ALE =1 it provides address
and data with the help of a 74L.S373 latch.

16

16

+Vce

2 iFizEe

pull-up resistors

PO.
PO.
PO.
PO.
PO.
PO.
PO.
PO.

8051

_~SnmEWNRES

Port 1: Port 1 occupies a total of 8 pins (pins 1 through 8). It has no dual application and acts only as
input or output port. In contrast to port 0, this port does not need any pull-up resistors since pull-up
resistors connected internally. Upon reset, Port 1 is configured as an output port. To configure it as an
input port, port bits must be set i.e a high bit must be sent to all the port pins. This is normally done by the
instruction “SETB”. For

Ex:MOV A, #0FFH ; A=FF HEX

MOV P1, A ; make PI an input port by writing 1’s to all of its pins

Port 2: Port 2 is also an eight bit parallel port. (Pins 21- 28). It can be used as input or output port. As this
port is provided with internal pull-up resistors it does not need any external pull-up resistors. Upon reset,
Port 2 is configured as an output port. If the port is to be used as input port, all the port bits must be made

high by sending FF to the port. For ex,

MOV A, #0FFH ; A=FF hex

MOV P, A ; make P, an input port by writing all 1’s to it

Dual role of port 2: Port2 lines are also associated with the higher order address lines A8-AlS. In
systems based on the 8751, 8951, and DS5000, Port2 is used as simple /O port. But, in 8031-based
systems, port 2 is used along with PO to provide the 16-bit address for the external memory. Since an
8031 is capable of accessing 64K bytes of external memory, it needs a path for the 16 bits of the address.
While PO provides the lower 8 bits via A0-A7, it is the job of P2 to provide bits A8-A15 of the address. In
other words, when 8031 is connected to external memory, Port 2 is used for the upper 8 bits of the 16 bit

address, and it cannot be used for I/O operations.

17

17

PORT 3: Port3 is also an 8-bit parallel port with dual function. (Pins 10 to 17). The port pins can be used
for I/O operations as well as for control operations. The details of these additional operations are given
below in the table. Port 3 also do not need any external pull-up resistors as they are provided internally
similar to the case of Port2 & Port 1. Upon reset port 3 is configured as an output port. If the port is to be
used as input port, all the port bits must be made high by sending FF to the port. For ex,

MOV A, #0FFH ; A= FF hex
MOV P3, A ; make P3 an input port by writing all 1’s to it

Alternate Functions of Port 3: P3.0 and P3.1 are used for the RxD (Receive Data) and TxD (Transmit
Data) serial communications signals. Bits P3.2 and P3.3 are meant for external interrupts. Bits P3.4 and
P3.5 are used for Timers 0 and 1 and P3.6 and P3.7 are used to provide the write and read signals of

external memories connected in 8031 based systems

S. No Port 3 bit Pin No Function

1 P3.0 10 RxD
P3.1 11 TxD
P3.2 12 INTO

4 P3.3 13 INTI

5 P34 14 TO

6 P3.5 15 Tl

7 P3.6 16 WE

8 P3.7 17 E

Table: PORT 3 alternate functions

Interrupt Structure: An interrupt is an external or internal event that disturbs the microcontroller to
inform it that a device needs its service. The program which is associated with the interrupt is called the
interrupt service routine (ISR) or interrupt handler. Upon receiving the interrupt signal the
Microcontroller, finish current instruction and saves the PC on stack. Jumps to a fixed location in
memory depending on type of interruptStarts to execute the interrupt service routine until RETI (return
from interrupt) upon executing the RETI the microcontroller returns to the place where it was interrupted.

Get pop PC from stack

18

18

The 8051 microcontroller has FIVE interrupts in addition to Reset. They are

Timer 0 overflow Interrupt
Timer 1 overflow Interrupt
External Interrupt 0(INTO)
External Interrupt 1 (INT1)

Serial Port events (buffer full, buffer empty, etc) Interrupt

Each interrupt has a specific place in code memory where program execution (interrupt service routine)

begins.

External Interrupt 0: 0003 H

Timer 0 overflow: 000B H

External Interrupt 1: 0013 H

Timer 1 overflow: 001BH

Serial Interrupt : 0023 H

Upon reset all Interrupts are disabled & do not respond to the Microcontroller. These interrupts must be

enabled by software in order for the Microcontroller to respond to them. This is done by an 8-bit register

called Interrupt Enable Register (IE).

Interrupt Enable Register:

EA |— |ET2 | ES ET1|EX1 ETO0 EX0

EA : Globalenable/disable. To enable the interrupts this bit must be set high.

ET2:

ES

: Undefined-reserved for future use.

Enable /disable Timer 2 overflow interrupt.

: Enable/disable Serial port interrupts.

ET1:

EX1

Enable /disable Timer 1 overflow interrupt.

: Enable/disable External interruptl.

ETO:

EXO :

Enable /disable Timer 0 overflow interrupt.

Enable/disable External interruptO
19

19

Interrupt Priority Register:

Upon reset the interrupts have the following priority. (Top to down). The interrupt with the highest
PRIORITY gets serviced first.

1. External interrupt 0 (INTO)

2. Timer interruptO (TFO)

3. External interrupt 1 (INTI)

4. Timer interruptl (TF1)

5. Serial communication (RI+TI)

Priority can also be set to “high” or “low” by 8-bit IP register.- Interrupt priority register

—|— | PT2 | PS PT1 | PX1 |PTO PX0

IP.7: reserved

IP.6: reserved

[P.5: Timer 2 interrupt priority bit (8052 only)
IP.4: Serial port interrupt priority bit

IP.3: Timer 1 interrupt priority bit

IP.2: External interrupt 1 priority bit

[P.1: Timer O interrupt priority bit

[P.0: External interrupt O priority bit

TIMERS in 8051 Microcontrollers:

The 8051 microcontroller has two 16-bit timers Timer 0 (TO) and Timer 1(T1) which can be used
either to generate accurate time delays or as event counters. These timers are accessed as two 8-bit

registers TLO, THO & TL1, THI1 because the 8051 microcontroller has 8-bit architecture.

TIMER 0 : The Timer 0 is a 16-bit register and can be treated as two 8-bit registers (TLO & THO) and

these registers can be accessed similar to any other registers like A,B or R1,R2,R3 etc...

Ex: The instruction MOV TLO0,#07 moves the value 07 into lower byte of Timer0.

20

20

Similarly MOV RS, THO saves the contents of THO in the RS register.

D15 Do

THO o TLO L%
s d

el
T
TIMER 1 : The Timer 1 is also a 16-bit register and can be treated as two 8-bit registers (TL1 & THI)
and these registers can be accessed similar to any other registers like A,B or R1,R2,R3 etc...
Ex: The instruction MOV TLI1,#05 moves the value 05 into lower byte of Timerl.

Similarly MOV RO, TH1 saves the contents of TH1 in the RO register

D15 Do

” TH1 g TI1 A

T F 4
TMOD Register:

The various operating modes of both the timers TO and TI are set by an 8-bit register called
TMOD register. In this TMOD register the lower 4-bits are meant for Timer 0 and the higher 4-bits are

meant for Timerl.

7 D0

GATE | C/T| vy | o |eaTe|c/T| nax | nio

Tunerl Tiner 0

GATE: This bit is used to start or stop the timers by hardware .When GATE= 1, the timers can be started
/ stopped by the external sources. When GATE= 0, the timers can be started or stopped by software
instructions like SETB TRO or SETB TR1

C/T (clock/Timer): This bit decides whether the timer is used as delay generator or event counter. When
C/T = 0, the Timer is used as delay generator and if C/T=1 the timer is used as an event counter. The
clock source for the time delay is the crystal frequency of8051.

M1, M0 (Mode): These two bits are the timer mode bits. The timers of the 8051 can be configured in

three modes. Mode0, Model and Mode2. The selection and operation of the modes is shown below.

21

21

S.No Mo M1 Mode Operation

13-bit Timer mode

1 0 0 0 8-bit Timer/counter. THx with TLx as 5-bit
prescalar
) 0 1 1 16-bit Timer mode.16-bit timer /counter

without pre-scalar
8-bit auto reload. THx contains a value that

3 1 0 2 is to be loaded into TLx each time it
overflows
4 | 1 3 Split timer mode
Mode O
b TLX THX —> [TFx
Clock {5 bits) (8 bits)
Owverflow
Mode 1 flag
Timer
Clock TL X THX — = TFx
Owverflow
Mode 2 flag
e
c:-:;al: TL X _E—,‘# TF=x
ﬁ "‘?E Owverflow
] = flag
TH2X
Mode 3
s
c;::‘(?l: TL 1 TH1
—
Clock TLO —— [rFo
Owverilow
fla
12 B = THO —— | TF1
Owerflow
flag

Let us understand the working of Timer Mode 1

* For this, let us consider timer 0 as an example.

* 16-bit timer (THO and TLO)

* THO-TLO is incremented continuously when TRO is set to 1. And the 8051 stops to increment
THO-TLO when TRO is cleared.

22

22

* The timer works with the internal system clock. In other words, the timer counts up each machine
cycle.

* When the timer (THO-TLO) reaches its maximum of FFFFH, it rolls over to 0000, and TFO is
raised.

* Programmer should check TFO0 and stop the timer 0.
Steps of Mode 1
1. Choose mode 1 timer 0
- MOV TMOD#01H
2. Set the original value to THO and TLO.
— MOV THO#FFH
- MOV TLO#FCH
3. You better to clear the TF: TF0=0.
— CLR TFO0
4. Start the timer.
— SETB TRO
5. The 8051 starts to count up by incrementing the THO-TLO.

— THO-TLO= FFFCH,FFFDH,FFFEH,FFFFH,0000H

ol Ho [TLo. i
Start Y

time S:to ,,//
(e))+) o)
TF =0 TF =0 TF =0 TF =0 TF =1
- Monitor TF until
TF=1

6. When THO-TLO rolls over from FFFFH to 0000, the 8051 set TF0=1.
— THO-TLO= FFFE H, FFFF H, 0000 H (Now TF0=1)
7. Keep monitoring the timer flag (TF) to see if it is raised.

— AGAIN: JNB TF0, AGAIN

23

23

8. Clear TRO to stop the process.
— CLRTRO
9. Clear the TF flag for the next round.

— CLRTF0

TCON Register:

IE 1

i

IEO

I'rmo

Timer control register TMOD is a 8-bit register which is bit addressable and in which Upper nibble is

for timer/counter, lower nibble is for interrupts.

* TR (Timer run control bit)

— TRO for Timer/counter 0; TR1 for Timer/counter 1.

— TR is set by programmer to turn timer/counter on/off.

 TR=0 : off (stop)
* TR=I :on(start)

* TF (timer flag, control flag)

— TFO for timer/counter 0; TF1 for timer/counter 1.

— TF is like a carry. Originally, TF=0. When TH-TL roll over to 0000 from FFFFH, the

TF is set to 1.

e TF=0 : notreach

e TF=1:reach

» Ifwe enable interrupt, TF=1 will trigger ISR.

Simple applications using Ports &Timers

* Usinga port, by a simple program you can generate a Square wave ofany duty cycle.

HERE: SETB P1.0 (Make bit of Port 0 High)
LCALL DELAY
CLRP1.0

LCALL DELAY

24

24

SJIMP HERE ; Keep doing it

Here same delay is used for both High & low

50%Duty coycle
PO—— I 1

80al

8051-SERIAL COMMUNICATION:

Basics of Serial communication

Data transfer between two electronic devices (Ex Between a computer and microcontroller or a
peripheral device) is generally done in two ways

(i).Serial data Transfer — and
(i1).Parallel data Transfer

Serial communication uses only one or two data lines to transfer data and is generally used for
long distance communication. In serial communication the data is sent as one bit at a time in a timed
sequence on a single wire. Serial Communication takes place in two methods, Asynchronous data
Transfer and Synchronous data Transfer.

0 0
1 1
8 0 1 1 0 0 0 1 0 g)
Sender | > o |Receiver

0 0
1 1
0 0

Parallel to Serial Serial to Parallel

Converter Converter

Asynchronous data transfer allows data to be transmitted without the sender having to send a clock
signal to the receiver. Instead, special bits will be added to each word in order to synchronize the sending
and receiving of the data. When a word is given to the UART for Asynchronous transmissions, a bit
called the "Start Bit" is added to the beginning ofeach word that is to be transmitted. The Start Bit is used
to alert the receiver that a word of data is about to be sent, and to force the clock in the receiver into

synchronization with the clock in the transmitter.

25

25

Start bit Data bits Parity bit
\ - A o '/ — Stop bit

Serial data transmission

After the Start Bit, the individual bits of the word of data are sent .Here each bit in the word is
transmitted for exactly the same amount of time as all of the other bits. When the entire data word has
been sent, the transmitter may add a Parity Bit that the transmitter generates. The Parity bit may be used
by the receiver to perform simple error checking. Then at least one Stop Bit is sent by the transmitter. If
the Stop Bit does not appear when it is supposed to, the UART considers the entire word to be corrupted
and will report a Framing Error.

Baud rate is a measurement of transmission speed in asynchronous communication , it represents the
number of bits/sec that are actually being sent over the serial link. The Baud count includes the overhead
bits Start, Stop and Parity that are generated by the sending UART and removed by the receiving UART.

In the Synchronous data transfer method the receiver knows when to “read” the next bit coming from
the sender. This is achieved by sharing a clock between sender and receiver. In most forms of serial
Synchronous communication, if there is no data available at a given time to transmit, a fill character will
be sent instead so that data is always being transmitted. Synchronous communication is usually more
efficient because only data bits are transmitted between sender and receiver, however it will be more

costly because extra wiring and control circuits are required to share a clock signal between the sender
and receiver.

Devices that use serial cables for their communication are split into two cate gories.

1. DTE (Data Terminal Equipment). Examples of DTE are computers, printers & terminals.
2. DCE (Data Communication Equipment). Example of DCE is modems.

Parallel Data Transfer:

Paralle] communication uses multiple wires (bus) running parallel to each other, and can transmit data
on all the wires simultaneously. ie all the bits of the byte are transmitted at a time. So, speed of the
parallel data transfer is extremely high compared to serial data transfer. An 8-bit parallel data transfer is
8-times faster than serial data transfer. Hence with in the computer all data transfer is mainly based on
Parallel data transfer. But only limitation is due to the high cost ,this method is limited to only short

distance communications.

26

26

Differences between Serial data transfer and Parallel data transfer

S.No Serial Communication Parallel Communication

1 Data is transmitted bit after the bit in a | Data is transmitted simultaneously
single line through group of lines(Bus)

2 Data congestion takes place No, Data congestion

3 Low speed transmission High speed transmission

4 Implementation of serial links is not an | Parallel data links are easily
easy task. implemented in hardware

5. In terms of transmission channel costs | It is more expensive

such as data bus cable length, data bus
buffers, interface connectors, it is less

expensive
6 No, crosstalk problem Crosstalk creates interference between
the parallel lines.
7 No effect of inter symbol interference and | Parallel ports suffer extremely from
noise inter-symbol interference (ISI) and
noise, and therefore the data can be
corrupted over long distances.
8 The bandwidth of serial wires is much | The bandwidth of parallel wires is much
higher. lower.
9 Serial interface is more flexible to | Parallel data transfer mechanism rely on

upgrade , without changing the hardware hardware resources and hence not
flexible to upgrade.

10 Serial communication work effectively | Parallel buses are hard to run at high
evenat high frequencies. frequencies.

SERIAL COMMUNICATION IN 8051 MICROCONTROLLER

The 8051 has two pins for transferring and receiving data by serial communication. These two pins are
part of the Port3(P3.0 &P3.1) .These pins are TTL compatible and hence they require a line driver to
make them RS232 compatible .Max232 chip is one such line driver in use. Serial communication is

controlled by an 8-bit register called SCON register, it is a bit addressable register.

27

27

SCON (Serial Control) Register:

SMO | SMI | SM2 | REN | 88 | RB8 | T | RI

SMO SCON.7 Serial port mode selector
SM1 SCON.6 Serial port mode selector
Used for multiprocessor mode communication
SM2 SCON.5)
(not applicable for 8051)
Receive enable. Set or cleared by making this bit
REN SCON 4
either 1 or 0 foe enable /disable reception.
TBS SCON.3 9™ data bit transmitted in modes 2 and 3
9™ data bit received in modes 2 and 3.it is not
RB8 SCON.2 used in mode 0 & mode 1.1f SM2 = 0 RBS is the
stop bit .
TI SCON.1 Transmit interrupt flag
RI SCON.0 Receive interrupt flag.

B SMO, SM1: These two bits of SCON register determine the framing of data by specifying the
number ofbits per character and start bit and stop bits. There are 4 serial modes.

SM0 SM1
0 0 : Serial Mode 0
0 1 : Serial Mode 1, 8 bitdata, 1 stop bit, 1 start bit
1 0 : Serial Mode 2

1 1 : Serial Mode 3

B REN (Receive Enable) also referred as SCON.4. When it is high,it allows the 8051 to receive data
on the RxD pin. So to receive and transfer data REN must be set to 1.When REN=0,the receiver is
disabled. This is achieved as below

28

28

SETB SCON.4
& CLR SCONA4

B TI (Transmit interrupt) is the D1 bit of SCON register. When 8051 finishes the transfer of 8-bit
character, it raises the TI flag to indicate that it is ready to transfer another byte. The TI bit is
raised at the beginning of the stop bit.

RI (Receive interrupt) is the DO bit of the SCON register. When the 8051 receives data serially ,via RxD,
it gets rid of the start and stop bits and places the byte in the SBUF register. Then it raises the RI flag bit
to indicate that a byte has been received and should be picked up before it is lost. RI is raised halfway
through the stop bit.

Communication through RS232

A personal computer has a serial port known as communication port or COM Port used to connect a
modem for example or any other device, there could be more then one COM Port in a PC. Serial ports are

controlled by a special chip called UART (Universal Asynchronous Receiver Transmitter).

RS 232 standard describes a communication method where information is sent bit by bit on a physical
channel. The RS stands for Recommended Standard. The information must be broken up in data

words. The length ofa data word is variable.

It is one of the popularly known interface standard for serial communication between DTE &
DCE. This RS-232-C is the commonly used standard when data are transmitted as voltage .This standard
was first developed by Electronic industries association(EIA). For the RS-232C, a 25 pin D type
connector is used . DB-25P male and DB-25S female. RS-232 standard was first introduced in 1960’s by

Telecommunications Industry Association(TIA).
Interfacing the 8051 Microcontroller to PC:

As the RS-232 standard is developed earlier to TTL devices ,a USART such as 8251 is not
directly compatible with these signal levels .Because of this ,voltage transistors called line drivers and
line receivers are used to interface TTL logic with RS-232 signals . The line driver MC 1488 is used to
convert RS-232 to TTL.The microcontroller is connected to the PC using the DB9 connector.

The TxD and Rx D pins are connected to the TI in and RI in pins of the MAX 232 IC and the TI
out and RI in pins of the MAX IC are connected to the RxD and TxD pins of the DB9 connector as shown

in the interface diagram.

29

29

8051

11
Txp LB ol TIout{d

o {1 RI in 14
0 1m
RXD 1757 p3.0)

MAX 232

~ —
MICROCONIROLLER DB9 (R5232 Connector)

ADDRESSING MODES OF 8051:

The way in which the data operands are accessed by different instructions is known as the addressing
modes. There are various methods of denoting the data operands in the instruction. The 8051
microcontroller supports mainly 5 addressing modes. They are

1. Immediate addressing mode

2. Direct Addressing mode

3. Register addressing mode

4. Register Indirect addressing mode

5. Indexed addressing mode

Immediate addressing mode : The addressing mode in which the data operand is a constant and it is a
part of the instruction itself is known as Immediate addressing mode. Normally the data must be preceded
by a # sign. This addressing mode can be used to transfer the data into any of the registers including
DPTR.
Ex:MOV A ,#27 H :The data (constant) 27 is moved to the accumulator register

ADD R1 #45 H : Add the constant 45 to the contents of the accumulator

MOV DPTR ,# 8245H :Move the data 8245 into the data pointer register.

MOV P1,#21 H

30

30

Direct addressing mode: The addressing mode in which the data operand is in the RAM location (00 -
7FH) and the address of the data operand is given in the instruction is known as Direct addressing mode.

The direct addressing mode uses the lower 128 bytes ofInternal RAM and the SFRs
MOV R1,42H :Move the contents of RAM location 42 into R1 register

MOV 49H,A : Move the contents of the accumulator into the RAM location 49.
ADD A, 56H : Add the contents of the RAM location 56 to the accumulator

Register addressing mode :The addressing mode in which the data operand to be manipulated lies in

one of the registers is known as register addressing mode.

MOV A,RO : Move the contents of the register RO to the accumulator

ADD A,R6 :Add the contents of R6 register to the accumulator

MOV P1, R2 : Move the contents ofthe R2 register into port 1

MOV RS, R2 : This is invalid . The data transfer between the registers is not allowed.

Register Indirect addressing mode :The addressing mode in which a register is used as a pointer to the

data memory block is known as Register indirect addressing mode.

MOV A,@ RO :Move the contents of RAM location whose address is in RO into A (accumulator)
MOV @ R1, B : Move the contents of B into RAM location whose address is held by R1

When RO and R1 are used as pointers, they must be preceded by @ sign

One of the advantages of register indirect addressing mode is that it makes accessing the data more

dynamic than static as in the case of direct addressing mode.

Indexed addressing mode : This addressing mode is used in accessing the data elements of lookup table

entries located in program ROM space of8051.
Ex :MOVC A, @ A+DPTR

The 16-bit register DPTR and register A are used to form the address of the data element stored in on-
chip ROM. Here C denotes code .In this instruction the contents of A are added to the 16-bit DPTR
register to form the 16-bit address of the data operand.

31

31

8051 Instruction Set:
* Assembly language is machine dependant.
* Each family of microprocessors or microncontrollers has its own instruction set.
* Each instruction has an 8 bit op-code with an associated mnemonic.
* Some instructions have one or two additional bytes for operand (data or addresses).
* The 8051 has 255 instructions
Every 8-bit opcode from 00 to FF is used except for AS.

* The instructions are grouped into 5 groups

v Arithmetic
Logic
Data Transfer

Boolean

AN N N

Branching

Arithmetic Instructions:

« ADD
— 8-bit addition between the accumulator (A) and a second operand.
* The result is always in the accumulator.
+ The CY flag is set/reset appropriately.
« ADDC

— 8-bit addition between the accumulator, a second operand and the previous value of the
CY flag.

» Useful for 16-bit addition in two steps.
+ The CY flag is set/reset appropriately.
Example — 16-bit Addition
ADD 1E44H to 56 CAH
CLR C ; Clear the CY flag

MOV A, #44H ; The lower 8-bits of the 1% number

32

32

ADD A, #CAH : The lower 8-bits of the 2°¢ number

MOV R1, A ; The result 0OEH will be in R1. CY = 1.
MOV A, #1EH ; The upper 8-bits of the 1* number
ADDC A, #56H ; The upper 8-bits of the 2"¢ number
MOV R2, A ; The result of the addition is 75H

The overall result: 750EH will be in R2:R1. CY =0.

« DAA
— Decimal adjust the accumulator.
* Format the accumulator into a proper 2 digit packed BCD number.
* Operates only on the accumulator.
* Works only after the ADD instruction.
« SUBB

— Subtract with Borrow.

» Subtract an operand and the previous value of the borrow (carry) flag from the
accumulator.

— A<« A-<operand>- CY.

— The result is always saved in the accumulator.

— The CY flag is set/reset appropriately.
Example — BCD addition

ADD 34 to 49 BCD

CLRC ; Clear the CY flag
MOV A, #34H ; Place 1% number in A
ADD A, #49H : Add the 2™ number.

- A=7DH
DAA - A=83H

« INC
— Increment the operand by one.

» The operand can be a register, a direct address, an indirect address, the data pointer.
33

33

DEC

Decrement the operand by one.

* The operand can be a register, a direct address, an indirect address.

MUL AB/ DIV AB

Multiply A by B and place result in A:B.
Divide A by B and place result in A:B.

Logical Operations:

ANL/ORL

Work on byte sized operands or the CY flag.
« ANLA, Rn
* ANL A, direct
» ANLA, @Ri
« ANLA, #data
* ANL direct, A
* ANL direct, #data
« ANLC, bit
« ANLC, /bit

Works on bytes only.

CPL/CLR

Complement / Clear.

Work on the accumulator or a bit.
« CLR P12

RL /RLC/RR/RRC

Rotate the accumulator.
* RL and RR without the carry
» RLC and RRC rotate through the carry.

SWAP A

Swap the upper and lower nibbles of the accumulator.

No compare instruction.

Built into conditional branching instructions.

Data Transfer Instructions:

Data is stored at the source address and moved (copied) to a destination address.

The way these addresses are specified are determined by the addressing mode.

There are 28 different instructions for data transfer, which can be categorized into three types:

MOV <dest>, <src>

34

34

— Push <source> or Pop <dest>
— XCH <dest>,<src>
MOV
— 8-bit data transfer for internal RAM and the SFR.
+ MOVA, Rn
* MOV A, direct
* MOVA, @Ri
* MOV A, #data
* MOVRn, A
e MOV Rn, direct
* MOV Rn, #data
* MOV direct, A
* MOV direct, Rn
« MOV direct, direct
* MOV direct, @Ri
e MOV direct, #data
« MOV @Ri A
* MOV @R, direct
MOVC
— Move Code Byte
* Load the accumulator with a byte from program memory.
* Must use indexed addressing
« MOVC A, @A+DPTR
« MOVC A, @A+PC
MOVX
— Data transfer between the accumulator and a byte from external data memory.
* MOVXA, @Ri
+ MOVXA, @DPTR
* MOVX @Ri, A
* MOVX @DPTR, A
PUSH /POP
— Pushand Pop a data byte onto the stack.

— The data byte is identified by a direct address from the internal RAM locations.

« PUSHDPL

35

35

 POP 40H

XCH
— Exchange accumulator and a byte variable
+ XCHA, Rn
» XCH A, direct
« XCHA, @Ri
XCHD

— Exchange lower digit of accumulator with the lower digit of the memory location
specified.
XCHD A, @Ri
* The lower 4-bits of the accumulator are exchanged with the lower 4-bits of the
internal memory location identified indirectly by the index register.

* The upper 4-bits of each are not modified.

Boolean Operations:

This group of instructions is associated with the single-bit operations of the 8051.
This group allows manipulating the individual bits of bit addressable registers and memory
locations as well as the CY flag.
— The P, OV, and AC flags cannot be directly altered.
This group includes:

— Set, clear, and, or complement, move.

— Conditional jumps.
CLR
— Clear a bit or the CY flag.
« CLRPI.1
« CLRC
SETB
— Setabitorthe CY flag
« SETB A2
« SETBC
CPL

— Complement a bit or the CY flag.
« CPL40H ; Complement bit 40 of the bit addressable memory

36

36

« ORL/ANL
— OR/AND abit withthe CY flag

« ORL C,20H ; OR bit 20 ofbit addressable memory with the CY
flag
« ANL C,/34H ; AND complement of bit 34 ofbit addressable
memory with the CY flag.
« MOV
— Data transfer between a bit and the CY flag.
« MOV C,3FH ; Copy the CY flagto bit 3F of the bit addressable
memory.
« MOV P1.2,C ; Copy the CY flagto bit 2 of P1.
« JC/INC

* Jump to a relative address if CY is set/ cleared.
- JB/JNB
* Jump to a relative address ifa bit is set / cleared.
+ JBACC.2, <label>
« JBC

* Jump to a relative address if a bit is set and clear the bit.

Branching Instructions:

* The 8051 provides four different types of unconditional jump instructions:
— Short Jump — SIMP
« Uses an 8-bit signed offset relative to the 1% byte of the next instruction.
— Long Jump — LIMP
» Uses a 16-bit address.
» 3 byte instruction capable of referencing any location in the entire 64K of program
memory.
— Absolute Jump — AJMP
* Uses an 11-bit address.
» 2 byte instruction
* The upper 3-bits of the address combine with the 5-bit opcode to form the
1% byte and the lower 8-bits of the address form the 2™ byte.

37

37

* The 11-bit address is substituted for the lower 11- bits of the PC to calculate the
16-bit address of the target.
* The location referenced must be within the 2K Byte memory page
containing the AJMP instruction.
— Indirect Jump — JMP
JMP @A +DPTR
The 8051 provides 2 forms for the CALL instruction:
— Absolute Call- ACALL
* Usesan 11-bit address similar to AJMP
* The subroutine must be within the same 2K page.
— LongCall- LCALL
* Uses a 16-bit address similar to LIMP
* The subroutine can be anywhere.
— Both forms push the 16-bit address of the next instruction on the stack and update the stack
pointer.
The 8051 provides 2 forms for the return instruction:
— Return from subroutine — RET
* Pop the return address from the stack and continue execution there.
— Return from ISV — RETI
» Pop the return address from the stack.
» Restore the interrupt logic to accept additional interrupts at the same priority level
as the one just processed.
+ Continue execution at the address retrieved from the stack.
» The PSW is not automatically restored.

The 8051 supports 5 different conditional jump instructions.

ALL conditional jump instructions use an 8-bit signed offset.
Jump on Zero —JZ / INZ
 Jump ifthe A==0/A!=0

* The check is done at the time ofthe instruction execution.
— Jump on Carry—JC / JINC
* Jump if the C flag is set / cleared.
Jump on Bit— JB /JNB

« Jump if the specified bit is set / cleared.

* Any addressable bit can be specified.
38

38

— Jump if the Bit is set then Clear the bit — JBC
» Jump if the specified bit is set.
* Then clear the bit.

» Compare and Jump if Not Equal — CJNE

— Compare the magnitude of the two operands and jump if they are not equal.
* The values are considered to be unsigned.
* The Carry flag is set / cleared appropriately.
* CINE A, direct, rel
* CINE A, #data, rel
* CJNE Rn, #data, rel
» CJNE @Rj, #data, rel

* Decrement and Jump if Not Zero — DINZ

— Decrement the first operand by 1 and jump to the location identified by the second operand

if the resulting value is not zero.
* DIJNZ Rn, rel
* DIJNZ direct, rel
* No Operation
— NOP

Applications of Microcontrollers

Stepper Motor Interface

+% 1 otor

oo
: P : -,
sost |] mverting e
i __,_— buffers St e

Pins [
e

T AW
i O O
Pport [o7
B
B

39

39

Seven segment Interfacing

Simple parallel interface — stmilar to LED:

Voo T-segment
e S te Front Plan
- eparate Fron Es
3051 Driver/Deco dera)
[h '
==, l&l C
i d »
1}.@11: - B i
pins "L f
= [
g | Cotrmon Back Plane
Traffic light controller
Invetting
driving
huffers
ul’ E
o
o
o
/ >0

/

desired light pattern
in software

Interfacing Keyboard/ Displays:

The key board here we are interfacing is a matrix keyboard. This key board is designed with a
particular rows and columns. These rows and columns are connected to the microcontroller through its
ports of the micro controller 8051. We normally use 8*8 matrix key board. So only two ports of 8051
can be easily connected to the rows and columns of the key board.

Whenever a key is pressed, a row and a column gets shorted through that pressed key and all the
other keys are left open. When a key is pressed only a bit in the port goes high. Which indicates
microcontroller that the key is pressed. By this high on the bit key in the corresponding column is
identified.

Once we are sure that one of key in the key board is pressed next our aim is to identify that key. To
do this we firstly check for particular row and then we check the corresponding column the key board.

To check the row of the pressed key in the keyboard, one of the row is made high by making one of
bit in the output port of 8051 high . This is done until the row is found out. Once we get the row next
out job is to find out the column of the pressed key. The column is detected by contents in the input
ports with the help of a counter. The content of the input port is rotated with carry until the carry bit is
set.

The contents of the counter is then compared and displayed in the display. This display is designed
using a seven segment display and a BCD to seven segment decoder IC 7447.

The BCD equivalent number of counter is sent through output part of 8051 displays the number of
pressed key.

KEY PAD [+—— MICRO |— pispLAY
CONTROLER

Fig: Interfacing Key Board to 8051.

The programming algorithm, program and the circuit diagram is as follows. Here program is explained
with comments.

vl Yl Yl Y ¥l ¥l » P PO.0 P20 e =
o Lic

Yl Y ¥ ¥l 7| ¥ ¥ R e p2.3| :;: g“-":

YI YU Y vl oA v ¥ T‘ ues T Hs e
Yl Y Yl Y ¥l % ¥ PO 8051 oy 3

P10 P24 7 B '-!

4 ::’ g—

PORT P1 |,p1_? w5t 7 1 i\

41

Keyboard is organized in a matrix of rows and columns as shown in the figure. The microcontroller
accesses both rows and columns through the port.

1. The 8051 has 4 I/O ports PO to P3 each with 8 I/O pins, P0.0 to P0.7, P1.0 to P1.7, P2.0 to P2.7,
and P3.0 to P3.7. The one of the port P1 (it understood that P1 means P1.0 to P1.7) as an I/P port
for microcontroller 8051, port PO as an O/P port of microcontroller 8051 and port P2 is used for
displaying the number of pressed key.

2. Make all rows of port PO high so that it gives high signal when key is pressed.

3. See if any key is pressed by scanning the port P1 by checking all columns for non zero
condition.

4. If any key is pressed, to identify which key is pressed make one row high at a time.

5. Initiate a counter to hold the count so that each key is counted.

6. Check port P1 for nonzero condition. If any nonzero number is there in [accumulator], start
column scanning by following step 9.

7. Otherwise make next row high in port P1.

8. Add a count of 08h to the counter to move to the next row by repeating steps from step 6.

9. [If any key pressed is found, the [accumulator] content is rotated right through the carry until
carry bit sets, while doing this increment the count in the counter till carry is found.

10. Move the content in the counter to display in data field or to memory location

11. To repeat the procedures go to step 2.

Interfacing seven segment display to 8051:

7 segment LED display is very popular and it can display digits from 0 to 9 and quite a few
characters like A, b, C, ., H, E, e, F, n, o,t,u,y, etc. Knowledge about how to interface a seven segment
display to a micro controller is very essential in designing embedded systems. A seven segment display
consists of seven LEDs arranged in the form of a squarish ‘8’ slightly inclined to the right and a single
LED as the dot character. Different characters can be displayed by selectively glowing the required LED
segments. Seven segment displays are of two types, common cathode and common anode. In common
cathode type , the cathode of all LEDs are tied together to a single terminal which is usually labeled as
‘com‘ and the anode of all LEDs are left alone as individual pins labeled as a, b, ¢, d, e, f, g & h (or
dot) . In common anode type, the anode of all LEDs are tied together as a single terminal and cathodes
are left alone as individual pins. The pin out scheme and picture of a typical 7 segment LED display is
shown in the image below.

42

g fcoma b

e dcom ¢ dot

Digit drive pattern.

Digit drive pattern of a seven segment LED display is simply the different logic combinations of its
terminals ‘a’ to *h‘ in order to display different digits and characters. The common digit drive patterns
(0 to 9) of a seven segment display are shown in the table below.

Digit a b c d e f g
0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 | 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1

43

Interfacing seven segment display to 8051

-3

s3 o

-1~
10uFM 0

5

+5W

|

“EAF

R2
B.2K

I::.fT
|"~. -

33pF X1
=3

) 'CI:rE | 11.05582MHz 18
3

33pF

EA

RST

iy |

ATESSST

XTAL1

XTALZ
GHD

Ve

P1.3

P14

P15

Pi&

o1

Common cathode

seven segment LED display

T e = moQ 0o

Com

R3 to R10 = 560chm

lzo

Interfacing 7 segment display to 8051

The circuit diagram shown above is of an AT89S51 microcontroller based 0 to 9 counter which
has a 7 segment LED display interfaced to it in order to display the count. This simple circuit illustrates
two things. How to setup simple 0 to 9 up counter using 8051 and more importantly how to interface a
seven segment LED display to 8051 in order to display a particular result. The common cathode seven
segment display D1 is connected to the Port 1 of the microcontroller (AT89S51) as shown in the circuit
diagram. R3 to R10 are current limiting resistors. S3 is the reset switch and R2, C3 forms a de-bouncing
circuitry. C1, C2 and X1 are related to the clock circuit. The software part of the project has to do the

following tasks.

e Form a 0 to 9 counter with a predetermined delay (around 1/2 second here).

e Convert the current count into digit drive pattern.

e Put the current digit drive pattern into a port for displaying.

44

All the above said tasks are accomplished by the program given below.
Program.
ORG 000H //initial starting address
START: MOV A,#00001001B // initial value of accumulator
MOV B,A
MOV RO,#0AH //Register RO initialized as counter which counts from 10 to 0

LABEL: MOV A,B

INC A

MOV B,A

MOVC A,@A+PC // adds the byte in A to the program counters address

MOV P1,A

ACALL DELAY // calls the delay of the timer

DEC RO //Counter RO decremented by 1

MOV A,RO // RO moved to accumulator to check if it is zero in next
instruction.

JZ START //Checks accumulator for zero and jumps to START. Done
to check if counting has been finished.

SIMP LABEL

DB 3FH // digit drive pattern for 0

DB 06H // digit drive pattern for 1

DB 5BH // digit drive pattern for 2

DB 4FH // digit drive pattern for 3

DB 66H // digit drive pattern for 4

DB 6DH // digit drive pattern for 5

DB 7DH // digit drive pattern for 6

DB 07H // digit drive pattern for 7

DB 7FH // digit drive pattern for 8

DB 6FH // digit drive pattern for 9

45

DELAY: MOV R4,#05H // subroutine for delay
WAIT1: MOV R3,#00H
WAIT2: MOV R2,#00H
WAIT3: DINZ R2,WAIT3
DINZ R3,WAIT2
DINZ R4,WAIT1
RET

END

Multiplexing 7 segment displays to 8051.

Suppose you need a three digit display connected to the 8051. Each 7 segment display have 8 pins
and so a total amount of 24 pins are to the connected to the microcontroller and there will be only 8 pins
left with the microcontroller for other input output applications. Also the maximum number of displays
that can be connected to the 8051 is limited to 4 because 8051 has only 4 ports. More over three 3
displays will be ON always and this consumes a considerable amount of power. All these problems

associated with the straight forward method can be solved by multiplexing.

In multiplexing all displays are connected in parallel to one port and only one display is allowed to
turn ON at a time, for a short period. This cycle is repeated for at a fast rate and due to the persistence of

vision of human eye, all digits seems to glow. The main advantages of this method are

. Fewer number of port pins are required .
. Consumes less power.

. More number of display units can be interfaced (maximum 24).

The circuit diagram for multiplexing 2 seven segment displays to the 8051 is shown below.

46

+5V +5V +5V

E& Vee

i c thod
R3 ta R10 = 560chm T T
+| c3 seven segment LED display

=3 T 1 R3
+ TOuFH 0V P1.0 D1 D2
® | pst P11 < 2 l

3 5 L. |

PLZ—AAAA—
R2 S

4 RE
82K C1 2l B
ATESS1 i i

o PLAL—aan—T

6 R& M

R
R

= =R S 1 T ~ S+ R = |
e T . T =R v O = -}

c
— 19| xraLt PLT|” 4 rah | o -
aspF | x1 ACS48 BCS48

= R11] R12 _ |
10
c2 | 11.0582MHz ;g pP.0
N XTALZ pa 11 560 ochm 580 ohm
33pF GND

il IR

&

Multiplexing 7 segement displays to 8051

When assembled and powered on, the circuit will display the number *16” and let us see how it is
done. Initially the first display is activated by making P3.0 high and then digit drive pattern for “1” is
loaded to the Port 1. This will make the first display to show “1”. In the mean time P3.1 will be low and
so do the second display will be OFF. This condition is maintained for around 1ms and then P3.0 is
made low. Now both displays will be OFF. Then the second display is activated by making P3.1 high
and then the digit drive pattern for “6” is loaded to the port 1. This will make the second display to show
“6”. In the mean time P3.0 will be low and so the second display will be OFF. This condition is
maintained for another Ims and then port 3.1 is made low. This cycle is repeated and due to the

persistence of vision you will feel it as “16”.

Transistor Q1 drives the first display (D1) and transistor Q2 drives the second display (D2). R11
and R12 are the base current limiting resistors of Q1 and Q2. The purposes of other components are

explained in the first circuit.

47

Program:

ORG 000H // initial starting address

MOV P1,#00000000B // clears port 1

MOV R6,#1H // stores "1"

MOV R7,#6H // stores "6"

MOV P3.,#00000000B // clears port 3

MOV DPTR #LABELI1 // loads the address of line 29 to DPTR

MAIN: MOV A,R6 //"1" 1s moved to accumulator

SETB P3.0 // activates 1st display

ACALL DISPLAY // calls the display sub routine for getting the pattern for "1"
MOV P1,A // moves the pattern for "1" into port 1

ACALL DELAY // calls the 1ms delay

CLR P3.0 // deactivates the 1st display

MOV A,R7 //"2" 1s moved to accumulator

SETB P3.1 // activates 2nd display

ACALL DISPLAY // calls the display sub routine for getting the pattern for "2"
MOV P1,A // moves the pattern for "2" into port 1

ACALL DELAY // calls the 1ms delay

CLR P3.1 // deactivates the 2nd display

SIMP MAIN // jumps back to main and cycle is repeated

DELAY: MOV R3,#02H
DEL1: MOV R2,#0FAH
DEL2: DINZ R2,DEL2
DJNZ R3,DELI
RET
DISPLAY: MOVC A,@A+DPTR // adds the byte in A to the address in DPTR and loads A with data

present in the resultant address

RET

LABELI: DB 3FH
DB 06H
DB 5BH

DB 4FH
48

DB 66H
DB 6DH
DB 7DH
DB 07H
DB 7FH
DB 6FH

END

Interfacing A/D and D/A converters:
A/D Converter:-

ADC is the Analog to Digital converter, which converts analog data into digital format; usually
it is used to convert analog voltage into digital format. Analog signal has infinite no of values like a sine
wave or our speech, ADC converts them into particular levels or states, which can be measured in
numbers as a physical quantity. Instead of continuous conversion, ADC converts data periodically,
which is usually known as sampling rate. Telephone modem is one of the examples of ADC, which is
used for internet, it converts analog data into digital data, so that computer can understand, because
computer can only understand Digital data. The major advantage, of using ADC is that, we noise can be
efficiently eliminated from the original signal and digital signal can travel more efficiently than analog
one. That’s the reason that digital audio is very clear, while listening.

In present time there are lots of microcontrollers in market which has inbuilt ADC with one or
more channels. And by using their ADC register we can interface. When we select 8051
microcontroller family for making any project, in which we need of an ADC conversion, then we
use external ADC. Some external ADC chips are 0803,0804,0808,0809 and there are many more.
Today we are going to interface 8-channel ADC with AT89s52 Microcontroller namely ADCO0808/0809.

Circuit of “Interfacing ADCO0808 with 8051 is little complex which contains more connecting
wire for connecting device to each other. In this circuit we have mainly used AT89s52 as 8051

microcontroller, ADC0808, Potentiometer and LCD.

A 16x2 LCD is connected with 89s52 microcontroller in 4-bit mode. Control pin RS, RW and En
are directly connected to pin P2.0, GND and P2.2. And data pin D4-D7 is connected to pins P2.4, P2.5,
P2.6 and P2.7 of 89s52. ADCO0808 output pin are directly connected to port P1 of AT89s52. Address
line pins ADDA, ADDB, AADC are connected at P3.0, P3.1, and P3.2.

ALE (Address latch enable), SC (Start conversion), EOC (End of conversion), OE (Output

enable) and clock pins are connected at P3.3, P3.4, P3.5, P3.6 and P3.7.
49

And here we have used three potentiometers connected at pin 26, 27, and 28 of ADC0808.

A 9 volt battery and a 5 volt voltage regulator namely 7805 are used for powering the circuit.

U3
INPUT SUPPLY
AP o)77
| 2 Xt g 4
T B | RV
G2 |:| —pamy g eoonno -2 i«
‘T‘ 10004 | > ROADY =2
¢ | CRsTAL RO2IADD ok 0
e ‘ 18 wnate PO3ADS (2 y 0
4 UE PO4ADd (-2 -
10y L 9 18
LCD1 9 POGADS —= OE 2 VREF() W £
RST ROTIADT =2 6 VREF) (2
PO ; :Z ouTs ALE —g
PLITEN |5 o ADDC -2
Bl e, gk s RV2
RT| i ATBOSE2 ors s B 1o
ug @ S A PlA] oure ’ ik
Weuy uf neasmaze o) o LB PiS ouT3 ==
1 1.2 g 2? OUT2 e NG _g
o] o o] alo|oj-] ol ! P17 ouTt = |N5—2'—‘
iR 2 i : N4 == 9
—9 2 paug PSORKD (1 E0C N
i P2 1Ag PAATD (—+ ; N2 2
2 P30 PAINTO |12 oo o A
S| Paaikis PASINTI = clock § mo
R2 2 Padgii2 P40 2
2 pasikts PasT! (=12 o RV
1k ‘ Spo g POSMR 7
PAIME & PATRD : ik
I
* * * ¢ .
D/A Converter:-

The Digital to Analog converter (DAC) is a device, that is widely used for converting digital
pulses to analog signals. There are two methods of converting digital signals to analog signals. These
two methods are binary weighted method and R/2R ladder method. In this article we will use the
MC1408 (DAC0808) Digital to Analog Converter. This chip uses R/2R ladder method. This method can
achieve a much higher degree of precision. DACs are judged by its resolution. The resolution is a
function of the number of binary inputs. The most common input counts are 8, 10, 12 etc. Number of
data inputs decides the resolution of DAC. So if there are n digital input pin, there are 2" analog levels.

So 8 inputs DAC has 256 discrete voltage levels.

The MC1408 DAC (or DAC0808)

In this chip the digital inputs are converted to current. The output current is known as /,,, by connecting
a resistor to the output to convert into voltage. The total current provided by the I,, pin is basically a
function of the binary numbers at the input pins Dy - D7 (Dy is the LSB and D7 is the MSB) of DAC0808

and the reference current I,

50

The following formula is showing the function of 7,

Tou (27, D6 D5 D4 D3 D2 DI DO
Out =drefl -+ =+ g T 36 "33 T 64 T 128 " 256

The I,.ris the input current. This must be provided into the pin 14. Generally 2.0mA is used as L.,

We connect the Iy, pin to the resistor to convert the current to voltage. But in real life it may cause
inaccuracy since the input resistance of the load will also affect the output voltage. So practically
Lo current input is isolated by connecting it to an Op-Amp with Ry= 5KQ as feedback resistor. The

feedback resistor value can be changed as per requirement.

Generating Sine wave using DAC and 8051 Microcontroller

For generating sine wave, at first we need a look-up table to represent the magnitude of the sine value of
angles between 0° to 360°. The sine function varies from -1 to +1. In the table only integer values are
applicable for DAC input. In this example we will consider 30° increments and calculate the values from
degree to DAC input. We are assuming full-scale voltage of 10V for DAC output. We can follow this

formula to get the voltage ranges.
Vout =5V + (5 xsin0)

Let us see the lookup table according to the angle and other parameters for DAC.

Angle(in 0) sin0 Vout (Voltage Magnitude) Values sent to DAC
0 0 5 128
30 0.5 7.5 192
60 0.866 9.33 238
90 1.0 10 255
120 0.866 9.33 238
150 0.5 7.5 192
180 0 5 128
210 -0.5 2.5 64
240 -0.866 0.669 17
270 -1.0 0 0

51

Angle(in 0) sin0 Vout (Voltage Magnitude) Values sent to DAC

300 -0.866 0.669 17
330 -0.5 2.5 64
360 0 5 128

(=]
=Lt
QW Rl

=
jry
i
Pl

;
EE
_f

2
7

:
HE
I

T
- g EnEREEDE

el

5
B
i
iz

& EI,E-IE
|_i"_
I
§0
bbb e L F
i g
i ¢
slelafela blsbebd b mj

1F
k-3
i
E

52

<l <]

a4

G

L

UNIT-5

ARM Architectures and Processors :

ARM Architecture, ARM Processor families, ARM Cortex-M Series family; ARM Cortex-
M3 processor functional description, functions and interfaces. ’

Programmers Model: Modes of operation, and execution, Instruction set summary, System
address map, write buffer, bit-banding, Processor core register summary, exceptions.

ARM Cortex-M3 programming- Software delay, Programming techniques, Loops, Stack and
Stack pointer, subroutines and parameter passing, parallel I/0, Nested vectored Interrupt
Controller- functional description, and NVIC Programmer’s model.

INTRODUCTION :
ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple
Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the

~ ARMBG processor family,and VLSI became the initial licensee.

The ARM Cortex™-M3 processor, the first of the Cortex generation of processors -

- released by ARM in 2006, was primarily designed to target the 32-bit microcontrolier

market. The Cortex-M3 processor provides excellent performance at low gate count and

comes with many new features previously avail- able only in high-end processors. The -
Cortex-M3 addresses the requirements for the 32-bit embedded processor market in the-
following ways:

- Greater performance efficiency: allowing mere work to be done without
increasing the frequency or power requircments :

. Low power consumption: enabling longer battery life, especially critical in
portable products including wireless networking applications -

. Enhanced determinism: guaranteeing that critical tasks and interrupts are
serviced as quickly as possible and in a known number of cycles

. Improved code density: ensuring that code fits in even the smallest memory
footprints .

. Ease of use: providing easier programmability and debugging for the growing
number of 8-bit and 16-bit users migrating to 32 bits

. Lower cost solutions: reducing 32-bit-based system costs close to those of
legacy 8-bit and 16-bit devices and enabling low-end, 32-bit microcontrollers
to be priced at less than USS$1 for the first time .

. Wide choice of development tools: from low-cost or free compilers to full-
featured development suites from many development tool vendors

FEATURES OF ARM7 PROCESSOR:

.

e Itis a 32-bit'RISC-processor core (32-bit instructions)

* It consists of 37 pieces of 32-bit integer registers. Out of 37 registers 16 registers are
readily available for user.

¢ ARM consists of Pipelined architecture . Fetch, Decode and Execute are thg 3
stages of ARM processor.

* It has Cache memory. Cache memory is a small memory placed between processor
and main memory to store recently accessed ftransactions (depending on the
implementation).

* Based on memory architecture, ARM processor is a Von Neumann-type bus
structure (ARM?7), which has a single memory for both code and data. ARM9 has
Harvard architecture which has separate memory for code and data.

* ARM processor can able to handle 8 / 16 / 32 -bit data types. _
e lhere are 7 modes of operation nameiy User,FIQ,IRQ,Supervisor mode, Abort
mode. System mode. Undefined mode.

e T'he architecture is very simple which is reasonably good speed and less power
consumption ratio.

e It implements two instruction set, 32-bit ARM instruction set and 16-bit Thumb
instruction set.

ARM ARCHITECTURE :

Advanced RISC Machine or Acorn RISC Machine is the architecture with different
computing architectures set to be used in different environments. 32-bit and 64-bit can be
used here in different computer processors. It was developed by Arm Holdings and the
architecture is updated in between. This architecture is specified to be used with CPU,
different chips in the system, and in different registers. Reduced Instruction Set Computing
helps in creating instructions for the system to be used for several purposes. Smartphones,
microcomputers, and embedded devices also use ARM architecture for the instruction set in

the registers.

m

am

m oo o

T]

A 31:0] . §
=
3 4 1
R il ciis seiehy N n glp ',. 0
* Address Reglstar i 1§ H Scan
(¢ Ry e ‘ cm
‘ Pl W /|m | - i
A 4 R Y]
| T n
i 38 ,‘Mdmuﬁ 1 B D
— 8 LIncrementer. | 1e Bl =0
— - e C3cy
B =
A i3 ot gy i o =
AL *f. .\;Bllki*. i i & e ME
U jf.w‘a:‘i.fi‘r&e‘..h\vxtu’hsnw:;v.\“g.ﬁsgl’:‘.??gﬂ - %’1 PR S A g -2 WAL
& 1 ShRLsss 5 E ¥ TAT N AE o4 % ‘, K 3 nu'“.
{8 m ‘; \g I I(’I | T A T e ; i 4:> Bl lnDSlm%llnl -;'i&,mlﬂ
& i % ——— . e ecoder e 1R
s il e e R | U <
s 3 ' [Erg x e i et R e a— uRESFT
‘ e | T qmm—]| R
g _ ‘Muhipller, 3 ' g 8
4 B2 5 . P . / 25 %)
B 2 Rty PO g T 4 wmwmw& 'u,‘} :,,::“
I ¥
3 u y _ F3 v.f;s
e 8 | et e e e e e | R =S
e : = sty s
—v s 0 1A & 7
SR hY R ol
Fe i = o -
NGRS TR AL Sk (G8e e
> : T ey B T T e A YT e f \n il
o, e hE L% LTS T4 E S g BAS ERETE LY ;.i% Yo Dg
SRS o S e e e S : R snspsnarsnerd] Wl Lvatet s st B [RS

The architecture can be divided into A, R, and M profiles. A profile is mainly for
applications, R profile is for real-time and M profile is for Microcontroller. A profile helps
to maintain high performance and is designed to run the complex system in Linux or
Windows. R profile checks for systems with real-time requirements and is found in
networking equipment or embedded control systems. M profile is used in IOT devices and
can be synchronized with small and high-power devices.

ARM7TDMI architecture is shown in above figure, which has T=Thumb
instruction set, D=Debug Unit, M=MMU(Memory Management Unit) and [=Embedded
Trace Core. It is also called as LOAD and STORE architecture since, the processor can
access only the registers and not the memory. It consists of main blocks like Address

register, Address incrementer, Register Bank, 32x8 multiplier, Barrel shift
and Data in, Instruction decoder and control logic blocks.

1.

er. ALU, Data out

Instruction Decoder and control logic block is used to decodes the instruction before

it is processed by the ALU.

Register Bank is connected to ALU by two data paths, one is thr ough A-bus and the

other through B-bus it passes Barrel shifter before reaching ALU. The data will be
hich is called LOAD and

fetched from rcglsters(RO -R15) by ALU for processing w
the results will be stored in to registers after processing which is called STORE.Let.

The input registers are denoted by Rm and Rn and the output registers are denoted

by Rd.
Program counte
address register through PC bus.

Barrel shifter is also called as a pre-processor.ic, if the d
or to rotate. it will be donc by Barrel shifter before sen

Barrei shifter are caiied as commn"mona] circuit which will t

r is used to fetch the address of the next instruction and stored in

ata has to be shift lefi. right
ding it to ALU. ALU and
ake only one second for

the operations.
nter is used to store the next address from where the instruction has

Address increme
to be fetched.

CONTROL SIGNALS OF ARM7 PROCESSOR:

1.

2.
3.

- This ic the 32-bit address bus. ALE. ABE, and APE are used to

A[31:0]
Control when the address bus is valid.
ABE : Address Bus Enable
ALE - Address Latch Enable. Address signals have to be maintained high
Until the complete duration of memory ss cycles
ABORT : Memory Abort
APE : Address Pipeline Enable. This mode is used for DRAM systems.
BL[3:0] : B)-'tc Latch enable. The values on data bus are latched on the falling
Edge, when these are high.
Break Point A conditional request for the processor to enter in to Debug state by
making this signal HIGH.
CPA Coprocessor Absent. If Coprocessor is able to respond the processor, this
signal goes low. '
crPB Coprocessor Busy. When the coprocessor is ready to accept the request

From processor. this signal goes low.

register, . . s
i DataAddrcss Incrementer, Register Bank, 32x8 multiplier, Barrel shifter, ALU, Data out
in, Instruction decoder and control logic blocks.

1.

?nﬁstruction Decoder and control logic block is used to decodes the instruction before
it is processed by the ALU.

Register Bank is connected to ALU by two data paths, one is through A-bus and the
other through B-bus it passes Barrel shifter before reaching ALU. The data will be

fetched f'rom. registers(R0-R15) by ALU for processing which is called LOAD and
the r;csults will be stored in to registers after processing which is called STORE.Let,
The input registers are denoted by Rm and Rn and the output registers are denoted

by Rd.
Program counter is used to fetch the address of the next instruction and stored in
address register through PC bus.

Barrel shifter is also called as a pre-processor.ie, if the data has to be shift lefi, right

or to rotate. it will be done by Barrel shifter before sending it to ALU. ALU and

Barrel shiiier are caiied as combinational circuit which will take only one second for

the operations.
Address incrementer is used to store the next address from where the instruction has

to be fetched.

CONTROL SIGNALS OF ARM7 PROCESSOR:

1.

- This is the 32-bit address bus. ALE, ABE, and APE are used to

A[31:0]
Control when the address bus is valid.
ABE : Address Bus Enable
ALE . Address Latch Enable. Address signals have to be maintained high
Until the complete duration of memory access cycles.
ABORT : Memory Abort
APE . Address Pipeline Enable. This mode is used for DRAM systems.
BL[3:0] : B).'te Latch enable. The values on data bus are latched on the falling
Edge, when these are high.
Break Point : A conditional request for the processor to enter in to Debug state by
making this signal HIGH.
CPA : Coprocessor Absent. If Coprocessor is able to respond the processor, this
signal goes low.)
CPB : Coprocessor Busy. When the coprocessor is ready to accept the request

From processor. this signal goes low.

vd

10. DBGACK

11. DBGRQI

12. ECLK
13. HIGHZ

14. ISYNC

15. LOCK

16. MAS[1:0]

17. MCILK

18. nCPI

19. nk1Q
20.nlRQ
21.nM[4:0]
22. nMREQ
23.n0PC
24.nRESET
25.nRW
26.n”TRANS
27. nWAIT
28.SEQ

: Debug Acknowledgement. When the processor is in Dcbug stat
#

: Locked Operation. When the processor is per

e, this

signal goes high.
it[1] of

: Internal Debug Request. This is logical OR of DBGRQ and b

Debug control register.

: External Clock output.

HIGH Impedance, when HIGH impedance instruction is loaded into the

Tap Controller.

: Synchronous Interrupts. Set this signal high if nIRQ and nFIQ are

Synchronous to the processor clock.
forming a locked memory

access.
Memory Access Size. It is used to indicate to the memory system the size

of data transfer required for both read & write control signals.

Memory Clock Input. This is the main clock for all memory access and

processor operations.
Not Coprocessor Instruction.. When coprocessor instruction are processed,

this signal goes low.

: Not Fast Interrupt Request.

: Not Interrupt request.

: Not processor mode. Indicates current processor mode.
: Not Memory Request.

: Not Opcode Fetch

: Not Reset

: Not Read Write

: Not Memory Translate

: Not Wait
: Sequential Address. When the address of the next memory is close to the

last memory

T et Ui

ARM PROCESSOR FAMILY:

.

0 | R e :;_'v? Memory Management
@j{{g;g‘AmhnnmmVeml&n 15 Featugs*‘ “3‘1"’?’ FRL i '
ARM7TDMI ARMvV4T
ARM7TDMI-S ARMVv4T :
ARM7E]-S ARMVSE = DSP, Jazelle
ARM920T ARMv4T MMU
ARM922T ARMv4T MMU
ARM926E]-S ARMVSE MMU DSP, Jazelle
ARM946E-S ARMVSE MPU DSP
ARM9Y66E-S ARMV5SE DSP
ARM9I68E-S ARMV5E DMA, DSP
ARM9I66HS ARMVSE MPU (optional) Dsp
ARM1020E ARMVSE MMU DSP
ARM1022E : ARMVSE MMU 3 DSP
ARM1026E3)-S ARMVSE MMU or MPU DSP, Jazelle
ARM1136XF)-S = ARMVE MMU DSP, Jazelle
ARM11761Z(F)-S ARMVE MMU + JrustZone DSP, Jazelle .
ARM11 MPCqre ARMV6 MMU + 'numproc&sor@che DSP, Jazelle
' support ‘
ARM1156T2(F)-S ARMV6 MPU DSP
Cortex-M0 - ARMV6-M - NVIC~
Cortex-M1 ARMvV6-M FPGA TCM interface NVIC
Igrtex—hm ARMv7-M MPYy {opticnal) NVIC

Table 1.1 ARM Processor Names Continued
- 1 — et o] 5 i by ssbiogy - TrTeT——
= Higentemey o T

{F Memory Management-—-f i | e e e T

ArchltectureVersmn || Features - Other Features

R . [RS SN ST DT S

rorm g

Cortex-R4 ARMV7-R m— s

Cortex-R4F ARMvV7-R MPU DSP + Floating
point
Cortex-A8 ARMV7-A : MMU + JustZone DSP, Jazelle,
NEON + floating
point
Cortex-A9 ARMV7-A MMU + JistZope + DSP, Jazelle,
multiprocessor NEON + floating

point

~rs

v

A

CORTEN M33:

?

The Cortex-M33 core was announced in October 2016 and based on the
i November

newer ARMvS8-M architecture that was previously announced In Y i
2015. Conceptually the Cortex-M33 is similar to a cross of Cortex-M4 and Cortex-M23, an

also has a 3-stage instruction pipeline.

Optionally it is connected with:

Floating-Point Unit (FPU): single-precision only IEEE-754 compliant. It is called the
FPv5 extension.

Optional Memory Protection Unit (MPU): 0, 4, 8, 12, 16 regions.

 Optional Security Attribution Unit (SAU): 0, 4, 8 regions.

Micro Trace Bufter (MTB) (available in M0+/M23/M33/M35P).

CORTEX M35P: - .
The Cortex-M35P core was announced in May 2018. It is conceptually a Cortex-

M33 core with a new instruction cache. plus new tamper-resistant hardware concepts

borrowed from the ARM Secure Core family, and configurable parity and ECC features.

CORTEX M55:

The Cortex-M55 core was announced in February 2020 and is based on the Armv8.1-M
architecture that was previously announced in February 2019. It also has a 4-stage
instruction pipeline. Stack limit boundaries (available only with SAU option).

ARM CORTEX-M SERIES FAMILY:

~ Arm Core Cortax ‘C°ﬂ"_ Cortex | Cortex, | Cortex [| _ Cortex ”';"c0nuf 2 ' Cortex ~ Cortex |-~ Cortex -
Mot Mo+ Tl M3 malel (Y74 R R VP X L CoM3atA | T Masp M55
ARM architecture ARMVEM! | ARMVE.14191 5 | ARMVI- ARMVTE ARMV7E- ARMYB-M ARMVB-M ARMVB-M
ARMVE-M Armv8.1-M
. . M0 M1 Mo Baselinel '3 Mainline!?! | Mainline! ')
Von Von von <
Computer architecture
Neumann Neumann Neumanii Harvard Harvard Harvard Von Neumann Harvard Harvard Harvard
105
Instruction pipetine 3 stages 2 stages 3 stages 3 stages 3 stages 6 stages 2 stages 3 stages 3 stages 4 .
Thumb-1 Instructions | . Most .- Most . | .. Most Entire |\ Entre ..|- . Entre 1 Mosti i Entre - . |. Entre || Entre L
Thumb-2 instructions Some Some Some Entire Entire Enbre Some Entire | Entire ‘A + Entre
Muliply instructions .) ROy 2
32x32 = 32-bit resull Yes Yes Yes ! Yes Yes Yes Yes Yes Yes Yes.
Mulliply instructions R RS
48 ALY
32x32 = 64-bit result Yes Yes Yes -}1' !;_32,_1.‘" LR ﬁ* 3] Yes Yes Yn; }
Divide instructions g) 3 5 > J
' 124 A
32/32 = 22-bit quctient J; i YEs Yes Yes (. YeS e |iYeS oy
Saturated Instructions GFas | Some J L Yes Yes | | Yes Yes i i b Yes i
e ————————— 3 e s $ e
| DSP Instructions CrONG St NG = Yes - Yes | ZaNGIIAGY Optonal .| Optional i Cplonal |
PP R P e 8 ———————— -~~~ — - LW : . T R LY e
| Singie-Precision (3P) = : t S g : : ‘,
| Floatmg-point & ¥ ‘Optonat | Cproral” ﬁﬁﬂ Optional Optional | Optunal |
| instrucnons P | : i
e S AT R, % PR |
: Double-Precision (DP) S PR R pe e S EATRS = 4;:\" o S A A :
| Floaung-point 0% No- sk Opnional & B ! % Oprional |
| instructions 5 G g i 20 Y S e e !
oo 07)_EEASETeRE e S e e R U S R S LR Optona
i ST i g S =S . - AT L T - |
KTruleone instiuctions [Foeioe s s 54 ;. e e O S s Ngreene e NOeS Optional i Optional Ophonai | Optional '|
| Saproc : DTS 5 > Ty CE D A | 1 1
i:.'s!:uc‘u.xcr%gfssa SR i S5y %’-ﬁ Bt _‘;ﬁgg l N Optoral | Opona! | Ogtonal :
S 3 & % £ CL¥ tan i ! i
¥ i - S : ?—i— A - St a - -
{ Hegum technology e S i e :%M = Noty o= o o or i NG e Sh Napes Optional |
Interrupt Jatency T torNN | 12cycles | 15nosecurty | 12 no securtty
(if zero-watt state 16 cycles 15 cycles 26 1or IRQ 12 cycles 12 cycles 14 worst ext ext
RAM) 3 case 27 security ext | ?7? secunty exi

CORTEX — MO:

The Cortex-MO core is optimized for small silicon die size and use in the
lowest price chips.It consists of an ARM architecture of ARMV6-M, with Von-
Nuemann memory architecture.It follows 3 stage instruction pipeline.lt uses both
Thumb I(most) and Thumb 2(some) instructions.It takes 16 cycles for Interrupt
including Zero-wait state RAM.

CORTEX — M0+ :

The Cortex-MO0+ is an optimized superset of the Cortex-MO. The Cortex-M0+
has complete instruction set compatibility with the Cortex-MO0 thus allowing the use of
the same compiler and debug tools. The Cortex-MO0+ pipeline was reduced from 3 to 2
stages, which lowers the power usage. In addition to debug features in the existing

Cortex-MO0, a silicon option can be added to the Cortex-MO+ called the Micro Trace
Buffer (MTB) which provides a simple instruction trace buffer.

CORTEX MI:

_ The Cortex-M1 is an optimized core espegially designed to be Joaded
Into FPGA chips. ARMv6-M architecture is the ARM architecture which it is using. It has
3-stage pipeline, Both the thumb instructions, Thumb-1 (most), is used except CBZ, CBNZ,
IT and some of the Thumb-2 are used, only BL, DMB, DSB, ISB, MRS, MSR are used.It
consists of 32-bit hardware integer multiply with 32-bit result.The Tightly-Coupled
Memory (TCM): 0 to 1 MB instruction-TCM, 0 to 1 MB data-TCM, cach with optional
ECC(Elliptic Curve Cryptography).

CORTEX M3:

ARMV7-M architecture is used in CORTEX M3. It has 3-stage pipeline with branch
speculation. Thumb-1 and Thumb-2 instructions are used entirely . If 32-bit hardware
integer multiply with 32-bit or 64-bit it results in signed or unsigned, add or subtract after
the multiply. 32-bit multiply is 1 cycle, but 64-bit multiply and MAC instructions require
extra cycles.32-bit hardware integer divided into (2-12 cycles). It has Optional Memory
Protection Unit (MPU): 0 or 8 regions.There are 1 to 241 interrupts including NMIL. It
requires 12 cycle interrupt latency.

CORTEX M4: -

Conceptually the Cortex-M4 is a Cortex-M3 plus DSP instructions, and optional
floating-point unit (FPU). A core with an FPU is known as Cortex-M4F. It uses ARMv7E-
M architecture, 3-stage pipeline with branch speculation. Thumb-1 and Thumb-2 instructions
used entirely. If 32-bit hardware integer multiply with 32-bit or 64-bit it results in signed or
unsigned, add or subtract after the multiply. For 32-bit Multiply and MAC(Media Access
Control) address are 1 cycle and for 32-bit hardware integer divide it takes 2-12
cycles.Saturation arithmetic support is available in which all operations such as addition and
multiplication are limited to a fixed range between a minimum and maximum value. For
DSP extension: Single cycle 16/32-bit MAC, single cycle dual 16-bit MAC, 8/16-
bit SIMD arithmetic is used.l to 241 interrupts including NMI is used.It has 12 cycle
interrupt latency. Integrated sleep modes are possible. Optional floating-point unit (FPU):

single-precision only IEEE-754 compliant. It is called the FPv4-SP extension.Optional

memory protection unit (MPU): 0 or 8 regions.

™ T

4T

s

p—

g

-

g r

CORTEX M7:

.

ost double the power efficiency
line with branch prediction and
ision and optionally double-
arged to 64-bit wide over
a Cortex-M7F, otherwise
1l be used. It follows the
ated arithmetic,

The Cortex-M7 is a high-performance core with alm
of the older Cortex-M4. It features a 6-stage superscalar pipe
an optional floating-point unit capable of single-prec
precision operations. The instruction and data buses have been enl
the previous 32-bit buses. If a core contains an FPU, it is known as
it is a Cortex-M7. Entire Thumb 1 and Thumb 2 instructions wi
same specifications of CORTEX M4 for multiplication,division, satur

interrupts and interrupt latency etc.

Optionally it is connected with:

1. Floating-point unit (FPU): (single precision) or (single and double-precision), both
IEEE-754-2008 compliant. It is called the FPv3 extension.
2. CPU cache: 0 to 64 KB instruction-cache. 0 to 64 KB data-cache. each with .
‘optional ECC. _ :
- 3. Tightly-Coupled Memory (TCM): 0to 16 MB instruction-TCM, 0 to 16 MB data-
TCM. each with optional ECC. '

4. Memory Protection Unit (MPU): 8 or 16 regions. :
5. Embedded Trace Macroccll (ETM): instruction-only. or instruction and data.
6. Retention Mode (with Arm Power Management Kit) for Sleep Modes.

CORTEX M23:

The Cortex-M23 core was announced in October 2016 and based on the
newer ARMv8-M architecture that ~ was previously announced in November
2015. Conceptually the Cortex-M23 is similar to a Cortex-M0+ plus integer divide
instructions and Trust Zone security features, and also has a 2-stage instruction pipeline. For
32-bit hardware integer divide it takes 17 or 34 cycles. It is much slower than divide in all

other cores. Stack limit boundaries are available only with SAU option(available in

M23/M33/M35P).

Optionally it is connected with:

Memory Protection Unit (MPU): 0, 4, 8, 12, 16 regions.
Optional Security Attribution Unit (SAU): 0, 4, 8 regions.
Single-cycle 1/0 port (available in M0+/M23).

Micro Trace Buffer (MTB) (available in M0+/M23/M33/M35P).

e

CORTEX M33: .

based on the
in November

The Cortex-M33 core was announced in October 2016 and

newer ARMv8-M architecture that was previously announced g I
2015. Conceptually the Cortex-M33 is similar to a cross of Cortex-M4 and Cortex-M23, anc

also has a 3-stage instruction pipeline. -

Optionally it is connected with:

« Floating-Point Unit (FPU): single-precision only IEEE-754 compliant. It is called the
FPv5 extension.

» Optional Memory Protection Unit (MPU): 0, 4. 8, 12, 16 regions.

« Optional Security Attribution Unit (SAU): 0, 4, 8 regions.

e Micro Trace Buffer (MTB) (available in M0+/M23/M33/M35P).

CORTEX M35P:

The Cortex-M35P core was announced in May 2018. It is conceptually a Cortex-
M33 core with a new instruction cache. plus new tamper-resistant hardware concepts
borrowed from the ARM Secure Core family. and configurable parity and ECC features.

CORTEX M55:

‘ihe Cortex-M35 core was announced in February 2020 and is based on the Armv8.1-M
architecture that was previously announced in February 2019. It also has a d-stage
instruction pipeline. Stack limit boundaries (available only with SAU option).

.or interface. It
i ave : ~olsters or uscer inter

The WIC is not programmable, and docs not have any registet
operates entirely from hardware signals.

NESTED VECTORED INTERRUPT CONTROLLER :

a method of pri
t latency.

i Y ig sizing interrupts,
Nested vector interrupt control (NVIC) 1s oriizing
improving the MCU’s performance and reducing interrup
-
i - i up to
The term “nested” refers to the fact that in NVIC, a number of'n.llcrru_plic(d}:1

several hundred in some processors) can be defined, and cach interrupt is assigl
priority, with “0” being the highest priority.

BREAKPOINT UNIT:

ables you to interrupt your application when exccution reaches a specific)
al execution stops before any

A breakpoint en
address. When exccution reaches the breakpoint, norm

instruction stored there is exccuted.

Types of breakpoints:
reaches a specific address.
lacing the instruction at the

« Softwarc breakpoints stop your program when exccution
n only be set in

Sofiware breakpoints are implemented by the debugger rep
breakpoint address with a special instruction. Software breakpoints ca

RAM.

« Hardware breakpoints use special processor hardware to interrupt application
execution. Hardware breakpoints are a limited resource.

'MEMORY PROTECTION UNIT:

The MPU is an optional component for memory protection. The processor supports
the standard ARMv7 Protected Memory System Architecture model. The MPU provides full

support for: *

e protection regions

e overlapping protection regions, with ascending region priority:
e 7 = highest priority
o 0= lowest priority.

e access permissions

e exporting memory attributes to the system.

FLOATING POINT UNiT :

“

O b adddaaalha dddddddedeadasdddd

V¢ a4 d

1
i1

e a

g

It is present only for Cortex-M4 Processor to perform several floating point

arithmetic opcrations.
WATCH POINT UNIT :

A watch point is similar to a breakpoint, b
monitored rather than an instruction being exceuted. W
data breakpoints, emphasizing that they arc data depen
when the address being monitored is accessed by your applic
or read/write watch points.

PIPELINING:

ARM CORTEX M3 consists of 3 stage instruction pipelining architecture.
Fetch, Decode and Execute.

ut it is the address of a data access that is
atch points are sometimes known as
dent. Exccution of application stops
ation. It can be set read, write,

They are

INTERFACES :

There are several bus interfaces on the Corte
M3 to carry instruction fetches and data accesses at t
are as follows: « Code memory buses * System bus ° Private peripheral bus The code
memery region access is carried out on the code memory buses, which ph_\'sically.consist.oi s
two buses. one calied 1-Code and other cailed D-Code. These are optimized for instruction
fetches for best instruction execution speed. The system bus is used to access memory and
neripherals. This provides access 1o the Static Random Access Memory (SI_{AM),
peripherals. external RAM. external devices, and part of the system level memory regions.

The private peripheral bus provides access 10 a part of the system-level memory

P

dedicated to private peripherals, such as debugging components.

x-M3 processor. They allow the Cortex-
he same time. The main bus interfaces

MODES OF OPERATION :
The Cortex-M3 processor has two modes and two privilege levels. The operation

modes are given as,
1. Thread Mode
. 2. Handler Mode .

In Thread mode,the processor works in normal mode. In Handler mode, the
processor runs in exception handler like an interrupt handler system.

There are two privilege levels which provide a mechanism for safeguarding
memory accesses to critical regions as well as providing a basic security model. They
are :

1. Privileged Level
2. User Level

When the processor is running a main program (thread mode), it can be either

in a privileged state or a user state, but exception handlers can only be in a

privileged state.

When the processor exits reset, it is in thread mode, with privileged access
rights. In the privileged state, a program has access to all memory ranges (except
when prohibited by MPU settings) and can use all supported instructions.

Software in the privileged access levél can switch the program into the user
access level using the control register. When an exception takes place, the processor
will always switch back to the privileged state and return to the previous state when

exiting the exception handler.

A user program cannot change back to the privileged state by writing to the
control register. It has to go through an exception handler that programs the control
register to switch the processor back into the priviieged access level when returning
to thread mode.

The support of privileged and user access levels provides a more secure and
robust architecture. For example, when a user program goes wrong, it will not be able to
corrupt control registers in the Nested Vectored Interrupt Controller (NVIC). In
addition, if the Memory Protection Unit (MPU) is present, it is possible to block user
programs from accessing memory regions used by privileged processes.

The user application stack and the kernel stack memory can be separated to
avoid the possibility of crashing a system caused by stack operation errors in user
programs. With this arrangement, the user program (running in thread mode) uses
the PSP, and the exception handlers use the MSP. The switching of SPs is automatic
upon entering or leaving the exception handlers

Privileged User

When running an exception handler Handler mode R
When not running an exception handler e
(e.g., main program)

Thread mode

Fhe mode and aceess level ol the processor are defined by the control register. When
the control register bit 0 s 0, the processor mode changes when an exception takes place.
:

When control register bit 0 is 1 (thread running user application), both processor
mode and access level change when an exception takes place.

Control register bit 0 is programmable only in the privileged level. For a user-
level program to switeh to privileged state, it has to raise an interrupt (for example,
supervisor call [SVC)) and wWrile to CONTROL within the handler.

SYSTEM ADDRESS MAP :

The Cortex-M3 processor has a fixed memory map. This makes it easier t0 port
sofl- ware from one Cortex-M3 product to another. The Nested Vectored Interrupt
Controller (NVIC) and Memory Protection Unit (MPU), have the same memory
locations in all Cortex-M3 products. Nevertheless, the memory map definition allows
great flexibility so that manufacturers can differentiate their Cortex-M3-based product

from others. ‘ A
Some of the memory locations are aliocated for privme.-periphera_is such as

debugging components. They are located’ in the private peripheral memory region.

These debugging components include the following:

« Fetch Patch and Breakpoint Unit (FPB)
Data Watch point and Trace Unit (DWT)
Instrumcntation Trace Macro cell JTM)
- LEmbedded Trace Macro ceil (ETM)

« ‘Trace Port Interface Unit (TPIU)

- ROM table

OxFFFFFFFF
OxEOOFF000 ROM table
OxEQOFEFFF .
External private peripheral bus Vendor specific
0OxE0042000
o0 = Private peripheral bus: Oxl
0xE0040000 TPIU iv EQOFFFFF
Debug/external 0xE0040000
EOO3FFFF B OxEQO3FFFF
0% Private peripheral bus:
Reserved Internal 0xED000000
OxEOOOF 000
OxEDOOEODD NVIC OxDFFFFFFF
OxEOOODFFF
OxE0003 Reserved
External device
0xE0002000 FPB -~
0xE0001000 DWT
OxEOOOD000 ™ 1GB 0xADOO0000
Ox9FFFFFFF
= External RAM
Bit-band alias
0x42000000 | 32 MB 1GB | 0x60000000
Ox5FFFFFFF
Ox41FFFFFF
040100000 | 31 M Peripherals
040000000 | ¥ MB Bit-band region oEae | bs
Ox3FFFFFFF_
SRAM
Ox23FFFFFF : .
05 GB | 0x20000000
Bit-band alias ot
0x22000000 | 32 MB ol
. Ox21FFFFFF
020100000 | 3% M8 05GB | 0x00000000
Bit-bandregion
0x20000000 | 1

The Cortex-M3 processor has a total of 4 GB of address space. Program code can be
located in the code region, the Static Random Access Memory (SRAM) region, or the
external RAM region. However, it is best to put the program code in the code region because
with this arrangement, the instruction fetches and data accesses are carried out simultaneously
on two separate bus interfaces.

The SRAM memory range is for connecting internal SRAM. Access to this region
is carried out via the system interface bus. a 32-MB range is defined as a bit-band alias.
Within the 32-bit-band alias memory range, each word address represents a single bit in
the 1-MB bit-band region. A data write access to this bit-band alias memory range will be
converted to an atomic READ- MODIFY-WRITE operation to the bit-band region so as
to allow a program to sct or clear individual data bits in the memory. The bit-band
operation applies only to data accesses not instruction fetches. By putting Boolean
information (single bits) in the bit-band region, it is possible to pack multiple Boolean
data in a single word while still allowing them to be accessible individually via bit-band

alias, thus saving memory space without the need for handling READ-MODIFY-WRITE
in software.

e

NN

(‘\.\

SR

WT

T "

N

7

71

n

71

vr

97

Another 0.5-GB block of address range is allocated to on-chip ;\criiwllf?t‘i\|x. Simila
to the SRAM region, this region supports bit-band alias and is accessed via the system
bus interface. However, instruction execution in this region is not allowed. I'he h(bl\aﬂhl
support in the peripheral region makes it easy to access or change control and status bit
of peripherals, making it easier to program peripheral control. ertal

Two slots of 1-GB memory space are allocated for external RAM and L‘\l\ll.\fl
devices. The difference between the two is that program execution in the c.\“lcmnl device
region is not allowed, and there are some differences with the caching I\FI\:l\'nx)I's. ' '

The last 0.5-GB memory is for the system-level components, mlc'n.l:ll I“‘”‘l‘l“" f'
buses, external peripheral bus, and vendor-specific system peripherals. There are two
segments of the private peripheral bus (PPB):

+ Advanced High-Performance Bus (AHB) PPB, for Cortex-M3 internal AHDB
peripherals only; this includes NVIC, FPB, DWT, and I'TM . _

+ Advance Peripheral Bus (APB) PPB, for Cortex-M3 internal APB dcvuc‘cs u.s.\u’ 8
as cxternal peripherals (external to the Cortex-M3 pm?'cs:mr): the ('mlc..\.-l\'i.‘
allows chip vendors to add additional on-chip APB peripherals on this private
peripheral bus via an APB interface

The NVIC is located in a memory region called the system control space (.S(..S).- |3C5'(:}\
providing interrupt control features, this region also provides the control registers for
- SYS- TICK, MPU, and code debugging control,

The remaining unused vendor-specitic memory range can be accessed via the system bus
nterface,

However. instruction execution in this region is not allowed.

The Cortex-M3 processor also comes with an optional MPU. Chip manufacturers can
decide whether to include the MPU in their products.

BIT — BAND OPERATIONS:

Bit-band operation support allows a single load/store operation to access
(read/write) to a single data bit. In the Cortex-M3, this is supported in two predefined
memory regions called bit-band regions. One of them is located in the first 1 MB of the
SRAM region, and the other is located in the first 1 MB of the peripheral region.

These two memory regions can be accessed like normal memory, but they can
also be accessed via a separate memory region called the bit-band alias. When the bit-
band alias address is used. each individual bit can be accessed separately in the least

significant bit (LSB) of each word-aligned address.

31 24 "1"5 8 0
0x200FFFFC [[[TTTTTTTITTITTTIIIL] [HEERRENEN
?:;i’:;d i HHHHHHHH!HIHllllllllﬂ
address, : : '
0x20000008 [T T T[T [T I T[T TIITTITTTIITIIT]
0x20000004 [[T TTTTTTTTTT I T I ITIIIITILITIL
0x20000000 [[[[TTTTTTTITTITITTTIGITIIIILITL 0x22000080
- 0x2200002C 0x22000010 0x22000000,

Bit-band alias
address

For example, to set bit 2 in word data in address 0x20000000, instead of using

three instructions to read the data, set the bit, and then write back the result, this task can
be carried out by a single instruction.

Without bit-ba

nd With bit-band

0000==

AR AT G e S

The asscmbler sequence for these two cases :

Without bit-band

LDR R0O,=0x20000000 ; Setup address LDR

LDR R1, [RO]

ORR.W R1, #0x4
STR R1, [RO]

Similarly,

s Read MOV
;s Modify bit STR
; Write back result

. Read data from)
. 0x20000000 to
. buffer |

Mappedto2
bustransfers

‘ . Wirite to R
0x20000000 from
buffer with bit2 set |

With bit-band

RO, = 0x22000008 ; Setup add
R1, #1 ; Setup dat
R1l, [RO] ; Write

bit-band support can simplify application code if we need to read a bit in a

memory location. For example, if we need to determine bit 2 of address 0x20000000,

Without bit-band

e E?i,'OiJZ'og‘ibbdob’]
[Shift bit 2 10 L5B
and mask other bits

lio'register’

With bit-band

. Mappedto1

"Read from ‘| bustransfers
© 0x22000008 | T~

Read data from
0x20000000, and
extract bit 2 to

register

<™

M

o

T

T

4T

T

AL

THE BUILT-IN NESTED VECTORED INTERRUPT CONTROLLER:

The Cortex-M3 processor includes an interrupt controller called the Nested Vectored
Interrupt Controller (NVIC). 1t is closely coupled to the processor core and provides a
number of features as follows:

* Nested interrupt support

* Vectored interrupt support

e Dynamic priority changes support
* Reduction of interrupt latency

e Interrupt masking

Nested Interrupt Support:

The NVIC provides nested interrupt support. All the external interrupts and most of the
system exceptions can be programmed to different priority levels. When an inte_rru.pt
occurs, the NVIC compares the priority of this interrupt to the current running priority
fevel. 1f the priority. of the new interrupt is higher than the current_level, the interrupt.
handler of the new interrupt will override the current running task. ~ - . '

Vectored Interrupt Support :

The Cortex-M3 processor has vectored interrupt support. When an interrupt is accepted.
the starting address of the interrupt service routine (1SR) is located from a vector table in
memory. There is no need io use sofiware to deiermine and branch to ihe siariing address
cf the ISR. Thus, it takes less time to process the interrupt request. K

Dynamic Priority Changes Support:

Priority levels of interrupts can be changed by software during run time. Interrupts that
are being serviced are blocked from further activation until the ISR is completed, so their
priority can be changed without risk of accidental re entry.

Reduction of Interrupt Latency: »

The Cortex-M3 processor also includes a number of advanced features to lower the
interrupt latency. These include automatic saving and restoring some register contents,
reducing delay in switching from one ISR to another, and handling of late arrival

interrupts.
Interrupt Masking:

Interrupts and system exceptions can be masked based on their priority level or masked
completely using - the interrupt masking registers BASEPRI, " PRIMASK. and

];\ R
(AULTMASK. They can be used to ensure that time-critical tasks can be finished on
ime without being interrupted.

EXCEPTIONS : .

The Cortex-M3 supports a number of exceptions, including a fixed number of
System exceptions and a number of interrupts, commonly called IRQ. The number of
interrupt inputs on a Cortex-M3 microcontroller depends on the individual design.
Int;nuptq generated by peripherals, except System Tick Timer, are also connected to the
interrupt input signals. The typical number of interrupt inputs is 16 or 32. Flowever, you
might find some microcontroller designs with more (or fewer) interrupt inputs. Besides
the interrupt inputs, there is also a non maskable interrupt (NMI) input signal. The actual
use of NMI depends on the design of the microcontroller or system-on-chip (SoC)
product you use. In most cases, the NMI could be connected to a watchdog timer or a
voltage-monitoring block that warns the processor when the voltage drops below a
certain level. The NMI exception can be activated any time, even right after the core exits

1

reset. .

The list of exceptions found in the Cortex-M3 is shown:

Wﬂ*‘?&ﬁwﬁw
sagvi..;,z-:,u B By ALE AR
i e R R T T s T T A TS S A
1 Resst) -3 (Highest) Resst
NMI -2 Nonmaskable interrupt .
3 Hard fautt -1 Al classes of fauft, when tha comesponding fault
handier cannot be activated because it is currentty

disapled or masked by exception masking
Memory management fautlt; caused by MPU

4 MemManage Settable
violation or invalid accesses (such as an instruction
fetch from a nonexecutable region)

5 Bus fault Settabls Error responsa received from the bus system;
caused by an instruction prefetch abort or data
access error

6 Usage fault Settable Usage fault; typical causes ars invalid instructions
or invalid state transition attempts (such as trying to
switch to ARM state in the Cortex-Mg3)

7-10 —_ —_ Reserved

11 sSvC Settabls Supervisor call via SVC instruction

12 Debug monitor Settable Debug monitor .

13 —_ —_ Reserved

14 PendSV Settable Pendable request for system service

15 SYSTICK Settable Systemn tick timer

16-255 IRQ Settable IRQ input #0-239

STACK MEMORY OPERATIONS :

In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the
stack PUSH and POP operations are also carried out automatically when entering or

exiting an exception/interrupt handler.

A= A AT T T Y o S VU A ¥ & vy ~r

Y 4 iy

>’

~

Basic Operations of the Stack :

. The SP is adjusted automatically in PUSH and POP so that multiple data PUSH
will not cause old stacked data to be erased. .
The function of the stack is to store register contents in memory so that they can
be restored later, after a processing task is completed. For normal uses, for each store
(PUSH), there must be a corresponding read (POP), and the address of the POP operation
should match that of the PUSH operation. When PUSH/POP instructions are used, the SP
is incremented/decremented automatically. -
When program control returns to the main program, the RO-R2 contents are the
same as before. Notice the order of PUSH and POP: The POP order must be the reverse

of PUSH.

Cortex-M3 Stack Implementation:

el. The SP points to

The Cortex-M3 uses a full-descending stack operation mod
before a new PUSH

the last data pushed to the stack memory, and the SP decrements

operation.
Ro [_Ox1234567B |
: : i PUSH (RO}
- Occupled ’ Oczcupied
Memory Occupled . \ Occupied
address Last pushed data [+ SP Occupiad
- O0x12345678 |+— SP
- ' - Stack
grow
Cortex-M3 Stack PUSH Implementation
' Occupled POP (R0} Occupled
Memory Occupled Occupled ﬂ
address Occupled Occupled
0x12345678 — SP 0x12345678 [— SP
X
RO [-] RO [Ox12345678]

For POP operations, the data is read from the memory location pointer by SP, and
then, the SP is incremented. The contents in the memory location are unchanged but will
be overwritten when the next PUSH operation takes place.

Because each PUSH/POP operation transfers 4 bytes o
‘contains 1 word, or 4 bytes), the SP decrements/increments by 4 at a time or a multiple of

Cortex-M3 Stack POP Implementation

4 if more than 1 register is pushed or popped.

f data (each register

The Two-Stack Model in the Cortex-M3 ¢
1. SP .main and 2. SP_Process- The SP register t0

The Cortex-M3 has two SPs: a
be used is controlled by the control register bit 1.
When CONTROL[1] is 0, the SP_main is used for bqth thredl D e ®
mode. In this arrangement, the main program and the exception handle
ing after power-up. de. In this

stack memory region. This is the default sett / - fhrcad T
CONTROL([1] is 1, thg SP_Process 1s us€ in
e e - : andler can have separaté stack

arrangement, the main program and the exception h

ad mode and handler
he same

memory regions.
Interrupt
exit

! Interrupt service :
routine (ISR)

Interrupt
event

1

]
]
I
1
1
1
]
]
]
!
T
1
1
]
)
1

[}
I
Main >\
program Stacking Unstacking ;
.]
1 >
. : Time
Thread mode Handler mode : Thread mode
{use MSP) (use MSP) ! (use MSP)
CONTROL{1}=0: Both Thread Level and Handler Use Main Stack.
Inerrupt
ext
' Imerrupt sarvica 1
— routina (ISA) "
avenl
" A -
!
Maln * I’\
program / Esmmg Unslacking:
T ! .
p ! i Tima =
”("ues: P”S,gde i Handler mode ! Thread mode
) : (use MSP) ! (use PSP)

CONTROL[1]=1: Thread Level Uses Process Stack and Handler Uses Main Stack

INSTRUCTION SET :

The processor does not support ARM i i
,' : ces ' nstructions.T -
Ox;s,etr(;lgélrc;rtli()s;t,tlt 1sEnow .posmble to handle al] processing requirerrflel;r‘?sb'z
raion ;eate._ Ven interrupts are now handled with the Thumb state i
s | re is n(? need to switch between states, the Cort -M
a number of advantages over traditional ARM proc::so ¥
IS,

such as:
< No state switching overhead, saving both execution time and instruction space
< No need to separate ARM code and Thumb code source files, making soflware
development and maintenance easier)
& It's casier to get the best efficiency and performance, in turn making it casicr
to write software, because there is 1o need to worry about switching code between ARM
and Thumb to try to get the best density/performance.

-t
/— Overhead
Rotum
ARM state | ¢
1 Timing critical code R
_(sabi ! in ARM state (e.9.. BXLA)
instructions) :
|
: 1 N
———————————————— S e b Dttt
1 1 |
| | |
Thumb state v . | Main -
Main program Branch with | prog
. (16-bn [in Thumb state state change : in Thumb state
i ticvons) (0.9., BLX) :
L _— .
T ! 1 1

Time

Instruction are mentioned as follows:

cond Mnemonic Meaning, integer Meaning, floating-point Condition flags
extension arithmetic arithmetic®

0000 EQ Equal Equal , Z=1

0001 NE Not equal Not equal, or unordered Z=0

0010 ¢sb® Carry set Greater than, equal, or umordered c=1

0011 cce Cany clear Less than c=0

0100 MI Minus, negative Less than _ N==1

0101 PL Plus, positive or zero Greater than, equal, or unordered N=0

0110 vs Overflow Unordered V=1

o111 "VC No overflow Not unordered V=0

1000~ HI Unsigned higher Greater than, or unordered C=1andZ=0

1001 Ls Unsigaed lower or same Less than or equal C—O0orZz—1

1010 . CE Signed greater than or equal Greater than or equal N=V

1011 LT Signed less than Less than, or unordered Ni=V

100 1’ Signed greater than Greater than Z=0adN=V

1no1 - LE -Signed less than or equal Le<s than, equal. or unordered Z=1oarN1=V

" Always (unconditional) Always {unconditional) Any

g 1110 None (AL) ¢

Mne Brief DesatlptionE i Y
ADR Load PC-relative address)
CLREX Clear exclusive
LCM{mcde} Lcad muttiple registers
Memory LDR{type) Lcad register using immediate offset
Access LDR{type} Load register using register offset
Instructions LDR{type}T Load reg‘ister wit:h unprivileged access
LDR{type} Load register using PC-relative address
LDRD Load register using PC-relative address (two words)
Offsét, LDREX{type} Load register exclusive
Pre-Ind ex, pPOP Pop registers from stack
and PUSH Push registers onto stack
Post-Index ([sTM{mode} Store multiple registers
STR{type} Store register using immediate offset
1A, IB, STR{type} Store register using register offset
DA, DB STR{type}T Store register with unprivileged access

)

STREX{type}

Store register exclusive

T b

J
¥ |

7

TN b o o

[Framania T o o o T v
[EC Add with carry
| aoD Add
[ADDW s
General [azm Logical AND
"“s" Arithmetic shift ight
Bre Dit clear
Data oz Count leading zeros
Processing (o Sompors nesae
. EOR Exclusive OR
Instructions Ils"- Logical shift left
[rsrR Logical shift nght
‘ [MOV Move
- Fav—r «1{Move top
'f .g.rlsd 'T'OVW Move 16-bit constant
specihied, [Move NOT
these [orn Logical OR NOT
instructions frax Looies o8
RBIT Reverse Dits
update the [==v Reverse byte order in a word
REV1E Reverse byte order in eonch halfword
N’ Zﬂ' c & v glsﬂ Reverss byte order in bottom halfword and sign extend
ags]non Rotate right
according to [rrx Rotate right with extend
BB Reverse subtract
the resu"' SBC Subtract with carry
[sus Subtract
I SUBW . Subtroct
I'I'EQ Tesl equivaience '
|Ts7T N [Tes .) - i 1
Multiply and Divide Instructions
- = o - = — T S e - ' 1
;',W‘.w.w‘ PSSP —— e L x&}{»‘&ﬁ‘:s\th. ! ¥
ﬁ‘@fﬁg Brisf D'”!‘.'P!i?ﬁ; e s :?.*&»S’;‘EZZ&@?S“;E@ L
Multiply with accumulate, 32-bit result
Multiply and subtract, 32-bit result
Mulbiply. 32-bit result
Signed divide
Signed multiply with accumulate (32x32+64), 64-bit result
Signed multiply {32x32), 64-bit result '

Unsignad divide
Unsigned muldply with accumulate (32x32+64), 64-bit result

Unsigned muliply (32x32), 64-bit result

: Saturating Instructions

Mosmonicy || Briet Description
IEAT Signed saturate
I USAT Unsigned saturate

Bitfield Instructions

N Bit field clear .
BFI Bit field Insent

SBEx Signed bit field extract

RHIE Sign extend a byte 5
S Sign extend a halfword

MEEX Unsigned bit field extract

UXTB Zero extend a byte
EXTH Zero extend a halfword

Branch and Control Instructions

= . TEEvET 2 - T
Bﬂefs.p\ﬁiw et ST VS 8L ST D IS IS BN TP IR

|B Branch

I BL Branch with iink

[pLx Branch indirect with link

IBX Branch indirect

[CtN2 Compare and branch if non-zero
l CBZ Compare and branch if zero

, IT If-Then

I TBB Table branch byte

I TBH Table branch halfword

Miscellaneous Instructions

Breakpoint
Change processor state, disable interrupts
— Change processor state, enable interrupts
Data memory barrier
BED Data synchronization barrier
1B Instruction synchronization barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No operation
SEV Send event
svc Supervisor call
WFE Wait for event
WFI Wait for Interrupt

16-BIT THUMB INSTRUCTION SET :

Some of the changes used to reduce the length of the instructions from 32 bits to 16 bits:

& reduce the number of bits used tc identity the register o less number cf registers can
be used

& reduce the number of bits used for the immediate value o smaller number range

& remove options such as ‘S’ o make it default for some instructions

& remove conditional fields (N, Z, V, C)
& no conditional executions (except branch)

& remove the optional shift (and no barrel shifter operation o introduce dedicated shift
instructions

& remove some of the instructions o more restricted coding

OPERATION

, ASSEMBLER
LEDR <Rd>, [<Ro>, <Rm>] - " | Load memory word from base register address + register offsct
LDRB <R@>, [<Rn>, <Rm>] | Load memory byte [7:0] from register address + register offset

LDRH <Rd>, [<Rn¥, <Rm>]

| Load halfiword [15:0] from register address + register offset’

LDRSB <Rd>, [<Rn>, <Rm>]

Load signed byte [7:0] from register address + register offset

lLDRSH_ <Rd>, [<Rn>, <Rm>]

Load signed halfword [15:0] from register address + register offset

f STR <Rd>, [<Rn>, <Rm>]

Store register word to register address

| STRB <Rd>, [<Ru>, <Rm>] .

| Store register byte [7:0] to register address -

’ STRH <Rd>, [<Rn>, <Rm>]

Store register halfword [15:0] to register address + register offset

LLDMIA <Rn>!, <registers> ° Mulnple scquentml memory. word loads

l STMIA <Rn>!, <registers> Store multiple register words to sequential memory locations

[PUSH <registers>. - , Push registers onto stack
! POP <registers> Pop registers from stack

i ASSEMBLER OPERATION 5
’LB <target” address> - Ul Bra.nchmcondmonal* T XY LS I IR N R AT T
i B<cond> <target address> : Branch condmonal

BLRm> = e BranchS it ik £
ELX <Rm> i Branch with lirk and cxchangc

| BKPT <immed 8> -~~~ | Software breakpoint —— =~ _ =]
[CBZ <Rn><label> ! Compare zero and branch O
{ CBNZ <Rn><label> = - | Compare not zero and branch
’ CPS <effect>, <iflags> Change processor state

[CPY <Rd> <Rm> Copy high or low register value to another high or low rcgister
IT <cond> Condition the following instruction,

IT<x> <cond> Condition the following two instructions,

IT<x><y> <cond> Condition the following three instructions,

IT<x><y><z> <cond> Condition the following four instructions

* I SEV <c> Send event

l WFE <c> Wait for event
I WFI <c> Wait for interrupt

REGISTERS:
The processor has the following 32-bit registers:

,» 13 general-purpose registers, r0-r12 .
- stack point alias of banked registers, SP_process and SP_main

«link register, r14

 program counter, r15

«one program status register, xPSR.

Name Functions (and banked registers)
—

.General-purpose register
General-purpose register
General-purpose register
General-purpose register > Low registers
General-purpose register
General-purpose register
General-purposa register

T

7 ’ General-purpose register _J
R8 General-purpose register R
9 _ General-purpose register
General-purpose register } High registers
General-purpose register
Ri12 General-purpose register
| R13 (MSP) || R13 (PSP) | Main Stack Pointer (MSP). Process Stack Pointer (PSP)
Link Register (LR)

Program Counter (PC)

ARM CORTEX-M3 has 13 General Purpose Registers which is divided into two
sections.(i) Low Registers (ii) High Registers. These registers are used for data handling

purposes. Low registers are from RO to R7 and High registers are from R8 to R12.

R13 — This register is called Stack Pointer register. It is also called banked register
since, there are two registers but one register is visible to the user. The two stack registers are
SP_main and SP_Process.

The default stack is SP_main, which will be only used by Handler mode. Both
SP_process and SP_main can be handled by Thread mode based on the programming.

R14 — It is called Link Register. When Interrupt occurs, the return address will be
stored in Link register and the program counter will move to the ISR. Other than interruption,
this register acts as a normal General purpose registers.

‘ R15 — It is called Program Counter. It is used to store the address of the next
instruction that has to be fetched.

Special Registers:

The Cortex-M3 processor also has a number of special registers.
& Program Status registers (PSRs)
+ Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)
Control register (CONTROL)

. . . ial i jons. The
These registers have special functions and can be accessed only by special instructio y

cannot be used for normal data processing.

T

Name \ Functions
Program status registers
Control register

-—-- —-— Special Registers and Their Functions
IROGIStor c it e i iim pib e & FUn O On e b R R R T Loy
m&iﬂémjcﬂii%g :ruftll:ll =Cs ..I'l',Lx 1:Ls j-s : 1 ¢ . ‘K‘L Ay

Ry .
e LS h s = S ot 2 Syt At Wk & R

xPSR Provide arthmetic and logic processing flags (zero flag and carry flag).

axecution status, and current executmg interupt number
PRIMASK Dtsatie all Intorrupts axcept the nonmaskable Interrupt (NMI) and hard fauit
FAULTMASK Disapio af Intermupts except thae NMI
BASEPRI Drsable ad interrupts of spacific priorty level or lower priority level
CONTROL . Define privileged status and stack polnt_e_r_s_e_let_:tp_n_

PROGRAM STATUS REGISTER:

31 28 27 26 2524 1) 16 15
N z c v Q A) I Sk
J 1t

= One Status Register consisting of
= APSR - Application Program Status Register — ALU flags

= IPSR - Interrupt Program Status Register — Interrupt/Exception No.

= EPSR - Execution Program Status Register
= |T field - If/Then block information

= ICl field — Interruptible-Continuable Instruction information
= xPSR
= Composite of the 3 PSRs
= Stored on the stack on exception entry

al 1

ar

~— g

~

- “w

w

APPLICATION PSR:

The Application PSR (APSR) comtains the condiion code Rags Before

entenng an exception. the
APSER will be access with 1

3130 20 X 27 N

processor saves the condition code Rags on the stack.
he MSR(2) and MRS(2) matructions

o
ulzlcivio o st
_ FIFLD NAME | DEFINITION
Negative o ks than flag
13 N ,
I = rewuk regative or ks than
0 - resily pewitien o grenter than i
| Zoto fag:
v 1=rosullof0
(301 2’ ..
| 0 = nonzeto rosult. :
; U T AOnSETo fSsun,
3 ‘ :
Carrydocrow ag !-‘
[29] c (1 = carry or borrow ‘!
. 0 = no carry of borrow. !
, |
- Overfiow flag: i
|1 = overfiow ‘
(28] v i
« 0 = no overtlow, ‘
i
1]
| %
(27) j : |
Q i Sucky saturation flag. a
é 3» ';
| |
| [26:0] - 7? i
f ' Reserved. i
| ‘ s
’ Ié i‘
i

INTERRUPT PSR:

The Interrupt PSR (IPSR) contains the Interrupt Service Routine (ISR)
number of the current exception activation.

31

9 8 0
Reserved 3 ISR NUMBER
FIELD : NAME DEFINITION
= - Reserved.
[31:9]
- [8:0] ISR NUMBER Number of pre-empted:
exception. e e

Base level =0

NMﬁ=2

SVCall =11

1INTISR[0) = 16

INTISR[1] =17

INTISR[15] = 31

INTISR[239] = 255

EXECUTION PSR:

The Execution PSR (EPSR) contains two overlapping fields:

«the Interruptible-Continuable Instruction (ICl) field for interrupted load multiple .
and store multiple instructions

.the execution state field for the If-Then (IT) instruction, and the Thumb state
bit (T-bit).

Interruptible-continuable instruction field:

-

Load Multiple (LDM) operations and Store Multiple (STM) operatipns are
interruptible. The ICI field of the EPSR holds the information required to continue the
load or store multiple from the point that the interrupt occurred.

If-then state field: _
The IT field of the EPSR contain the execution state bits for the If-Then
instruction.

‘31 127262524’ 23 ! 16'15 ! 109 : 0:

Reserved [ICUTT T Reserved 1cinT Reserved

The EPSR is not directly accessible. Two events can modify the EPSR:

« aninterrupt occurring during an LDM or STM instruction

e execution of the If-Then instruction.

FIELD | NAME

DEFINITION

[31:27] - - Resdkeearved.

JEVN B

Interruptible-continuable

instruction bits. When an
interrupt occurs during an
LDM or STM operation, the
multiple operation stops
temporarily. The EPSR uses
bits [15:12] tb store the
icl number of the next register
[26:25], [15:10] operand in the multiple
operation. After servicing the
interrupt, the processor
returns to the register pointed
to by [15:12] and resumes
the multiple operation. If the
ICI field points to a register
that is not in the register list
of the instruction, the
processor continues with the
nextregister in the list, if any;

\

[26:25], [15:10)

If-Then bits. These are the
execution state bits of the If-
Then instruction. They
contain the number of
instructions in the if-then
block and the conditions for
their execution.

[24]

The T-bit can be cleared using
an interworking instruction
where bit [0] of the written PC
is 0. It can also be cleared by
unstacking from an exception
where the stacked T bitis 0.

Executing an instruction while
the T bit is clear causes an
INVSTATE exception.

[23:16]

Reserved.

- [9:0]

Reserved.

